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1.  Introduction

Message integrity and authenticity are security properties that are critical to the secure operation of many
HTTP applications. Application developers typically rely on the transport layer to provide these properties,
by operating their application over TLS [TLS]. However, TLS only guarantees these properties over a single
TLS connection, and the path between the client and application may be composed of multiple independent
TLS connections (for example, if the application is hosted behind a TLS-terminating gateway or if the client
is behind a TLS Inspection appliance). In such cases, TLS cannot guarantee end-to-end message integrity
or authenticity between the client and application. Additionally, some operating environments present
obstacles that make it impractical to use TLS (such as the presentation of client certificates from a browser)
or to use features necessary to provide message authenticity. Furthermore, some applications require the
binding of a higher-level application-specific key to the HTTP message, separate from any TLS certificates
in use. Consequently, while TLS can meet message integrity and authenticity needs for many HTTP-based
applications, it is not a universal solution.

Additionally, many applications need to be able to generate and verify signatures despite incomplete
knowledge of the HTTP message as seen on the wire, due to the use of libraries, proxies, or application
frameworks that alter or hide portions of the message from the application at the time of signing or verification.
These applications need a means to protect the parts of the message that are most relevant to the application
without having to violate layering and abstraction.

Finally, object-based signature mechanisms such as JSON Web Signature [JWS] require the intact conveyance
of the exact information that was signed. When applying such technologies to an HTTP message, elements
of the HTTP message need to be duplicated in the object payload either directly or through the inclusion of
a hash. This practice introduces complexity, since the repeated information needs to be carefully checked for
consistency when the signature is verified.

This document defines a mechanism for providing end-to-end integrity and authenticity for components of an
HTTP message by using a detached signature on HTTP messages. The mechanism allows applications to create
digital signatures or message authentication codes (MACs) over only the components of the message that are
meaningful and appropriate for the application. Strict canonicalization rules ensure that the verifier can verify
the signature even if the message has been transformed in many of the ways permitted by HTTP.

The signing mechanism described in this document consists of three parts:

• A common nomenclature and canonicalization rule set for the different protocol elements and other
components of HTTP messages, used to create the signature base (Section 2).

• Algorithms for generating and verifying signatures over HTTP message components using this signature
base through the application of cryptographic primitives (Section 3).

• A mechanism for attaching a signature and related metadata to an HTTP message and for parsing attached
signatures and metadata from HTTP messages. To facilitate this, this document defines the "Signature-
Input" and "Signature" fields (Section 4).

This document also provides a mechanism for negotiating the use of signatures in one or more subsequent
messages via the "Accept-Signature" field (Section 5). This optional negotiation mechanism can be used along
with opportunistic or application-driven message signatures by either party.

The mechanisms defined in this document are important tools that can be used to build an overall security
mechanism for an application. This toolkit provides some powerful capabilities but is not sufficient in creating
an overall security story. In particular, the requirements listed in Section 1.4 and the security considerations
discussed in Section 7 are of high importance to all implementors of this specification. For example, this
specification does not define a means to directly cover HTTP message content (defined in Section 6.4 of
[HTTP]); rather, it relies on the Digest specification [DIGEST] to provide a hash of the message content, as
discussed in Section 7.2.8.
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1.1.  Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals,
as shown here.

The terms "HTTP message", "HTTP request", "HTTP response", "target URI", "gateway", "header field",
"intermediary", "request target", "trailer field", "sender", "method", and "recipient" are used as defined in
[HTTP].

For brevity, the term "signature" on its own is used in this document to refer to both digital signatures (which
use asymmetric cryptography) and keyed MACs (which use symmetric cryptography). Similarly, the verb
"sign" refers to the generation of either a digital signature or keyed MAC over a given signature base. The
qualified term "digital signature" refers specifically to the output of an asymmetric cryptographic signing
operation.

This document uses the following terminology from Section 3 of [STRUCTURED-FIELDS] to specify data
types: List, Inner List, Dictionary, Item, String, Integer, Byte Sequence, and Boolean.

This document defines several string constructions using ABNF [ABNF] and uses the following ABNF
rules: VCHAR, SP, DQUOTE, and LF. This document uses the following ABNF rules from [STRUCTURED-
FIELDS]: sf-string, inner-list, and parameters. This document uses the following ABNF rules
from [HTTP] and [HTTP/1.1]: field-content, obs-fold, and obs-text.

In addition to those listed above, this document uses the following terms:

HTTP Message Signature: A digital signature or keyed MAC that
covers one or more portions of an HTTP
message. Note that a given HTTP message
can contain multiple HTTP message
signatures.

Signer: The entity that is generating or has
generated an HTTP message signature.
Note that multiple entities can act as
signers and apply separate HTTP message
signatures to a given HTTP message.

Verifier: An entity that is verifying or has verified an
HTTP message signature against an HTTP
message. Note that an HTTP message
signature may be verified multiple times,
potentially by different entities.

HTTP Message Component: A portion of an HTTP message that is
capable of being covered by an HTTP
message signature.

Derived Component: An HTTP message component derived
from the HTTP message through the use
of a specified algorithm or process. See
Section 2.2.

HTTP Message Component Name: A String that identifies an HTTP message
component's source, such as a field name or
derived component name.

HTTP Message Component Identifier: The combination of an HTTP message
component name and any parameters. This
combination uniquely identifies a specific
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HTTP message component with respect to
a particular HTTP message signature and
the HTTP message it applies to.

HTTP Message Component Value: The value associated with a given
component identifier within the context of
a particular HTTP message. Component
values are derived from the HTTP
message and are usually subject to a
canonicalization process.

Covered Components: An ordered set of HTTP message
component identifiers for fields (Section
2.1) and derived components (Section
2.2) that indicates the set of message
components covered by the signature,
never including the @signature-
params identifier itself. The order of
this set is preserved and communicated
between the signer and verifier to facilitate
reconstruction of the signature base.

Signature Base: The sequence of bytes generated by the
signer and verifier using the covered
components set and the HTTP message.
The signature base is processed by the
cryptographic algorithm to produce or
verify the HTTP message signature.

HTTP Message Signature Algorithm: A cryptographic algorithm that describes
the signing and verification process
for the signature, defined in terms of
the HTTP_SIGN and HTTP_VERIFY
primitives described in Section 3.3.

Key Material: The key material required to create or
verify the signature. The key material
is often identified with an explicit key
identifier, allowing the signer to indicate to
the verifier which key was used.

Creation Time: A timestamp representing the point in
time that the signature was generated, as
asserted by the signer.

Expiration Time: A timestamp representing the point in time
after which the signature should no longer
be accepted by the verifier, as asserted by
the signer.

Target Message: The HTTP message to which an HTTP
message signature is applied.

Signature Context: The data source from which the HTTP
message component values are drawn. The
context includes the target message and any
additional information the signer or verifier
might have, such as the full target URI of a
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request or the related request message for a
response.

The term "UNIX timestamp" refers to what Section 4.16 of [POSIX.1] calls "seconds since the Epoch".

This document contains non-normative examples of partial and complete HTTP messages. Some examples use
a single trailing backslash (\) to indicate line wrapping for long values, as per [RFC8792]. The \ character and
leading spaces on wrapped lines are not part of the value.

1.2.  Requirements

HTTP permits, and sometimes requires, intermediaries to transform messages in a variety of ways. This can
result in a recipient receiving a message that is not bitwise-equivalent to the message that was originally sent.
In such a case, the recipient will be unable to verify integrity protections over the raw bytes of the sender's
HTTP message, as verifying digital signatures or MACs requires both signer and verifier to have the exact
same signature base. Since the exact raw bytes of the message cannot be relied upon as a reliable source for
a signature base, the signer and verifier have to independently create the signature base from their respective
versions of the message, via a mechanism that is resilient to safe changes that do not alter the meaning of the
message.

For a variety of reasons, it is impractical to strictly define what constitutes a safe change versus an unsafe
one. Applications use HTTP in a wide variety of ways and may disagree on whether a particular piece of
information in a message (e.g., the message content, the method, or a particular header field) is relevant.
Thus, a general-purpose solution needs to provide signers with some degree of control over which message
components are signed.

HTTP applications may be running in environments that do not provide complete access to or control over
HTTP messages (such as a web browser's JavaScript environment) or may be using libraries that abstract away
the details of the protocol (such as the Java HTTP Client (HttpClient) library1). These applications need to be
able to generate and verify signatures despite incomplete knowledge of the HTTP message.

1.3.  HTTP Message Transformations

As mentioned earlier, HTTP explicitly permits, and in some cases requires, implementations to transform
messages in a variety of ways. Implementations are required to tolerate many of these transformations. What
follows is a non-normative and non-exhaustive list of transformations that could occur under HTTP, provided
as context:

• Reordering of fields with different field names (Section 5.3 of [HTTP]).

• Combination of fields with the same field name (Section 5.2 of [HTTP]).

• Removal of fields listed in the Connection header field (Section 7.6.1 of [HTTP]).

• Addition of fields that indicate control options (Section 7.6.1 of [HTTP]).

• Addition or removal of a transfer coding (Section 7.7 of [HTTP]).

• Addition of fields such as Via (Section 7.6.3 of [HTTP]) and Forwarded (Section 4 of [RFC7239]).

• Conversion between different versions of HTTP (e.g., HTTP/1.x to HTTP/2, or vice versa).

• Changes in case (e.g., "Origin" to "origin") of any case-insensitive components such as field names, request
URI scheme, or host.

• Changes to the request target and authority that, when applied together, do not result in a change to the
message's target URI, as defined in Section 7.1 of [HTTP].

Additionally, there are some transformations that are either deprecated or otherwise not allowed but that could
still occur in the wild. These transformations can still be handled without breaking the signature; they include
such actions as:

• Use, addition, or removal of leading or trailing whitespace in a field value.

• Use, addition, or removal of obs-fold in field values (Section 5.2 of [HTTP/1.1]).
1 https://openjdk.java.net/groups/net/httpclient/intro.html
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We can identify these types of transformations as transformations that should not prevent signature verification,
even when performed on message components covered by the signature. Additionally, all changes to
components not covered by the signature should not prevent signature verification.

Some examples of these kinds of transformations, and the effect they have on the message signature, are found
in Appendix B.4.

Other transformations, such as parsing and reserializing the field values of a covered component or changing
the value of a derived component, can cause a signature to no longer validate against a target message.
Applications of this specification need to take care to ensure that the transformations expected by the
application are adequately handled by the choice of covered components.

1.4.  Application of HTTP Message Signatures

HTTP message signatures are designed to be a general-purpose tool applicable in a wide variety of
circumstances and applications. In order to properly and safely apply HTTP message signatures, an application
or profile of this specification MUST specify, at a minimum, all of the following items:

• The set of component identifiers (Section 2) and signature parameters (Section 2.3) that are expected
and required to be included in the covered components list. For example, an authorization protocol could
mandate that the Authorization field be covered to protect the authorization credentials and mandate that
the signature parameters contain a created parameter (Section 2.3), while an API expecting semantically
relevant HTTP message content could require the Content-Digest field defined in [DIGEST] to be present
and covered as well as mandate a value for the tag parameter (Section 2.3) that is specific to the API being
protected.

• The expected Structured Field types [STRUCTURED-FIELDS] of any required or expected covered
component fields or parameters.

• A means of retrieving the key material used to verify the signature. An application will usually use the
keyid parameter of the signature parameters (Section 2.3) and define rules for resolving a key from there,
though the appropriate key could be known from other means such as preregistration of a signer's key.

• The set of allowable signature algorithms to be used by signers and accepted by verifiers.

• A means of determining that the signature algorithm used to verify the signature is appropriate for the key
material and context of the message. For example, the process could use the alg parameter of the signature
parameters (Section 2.3) to state the algorithm explicitly, derive the algorithm from the key material, or use
some preconfigured algorithm agreed upon by the signer and verifier.

• A means of determining that a given key and algorithm used for a signature are appropriate for the context
of the message. For example, a server expecting only ECDSA signatures should know to reject any
RSA signatures, or a server expecting asymmetric cryptography should know to reject any symmetric
cryptography.

• A means of determining the context for derivation of message components from an HTTP message and
its application context. While this is normally the target HTTP message itself, the context could include
additional information known to the application through configuration, such as an external hostname.

• If binding between a request and response is needed using the mechanism provided in Section 2.4, all
elements of the request message and the response message that would be required to provide properties of
such a binding.

• The error messages and codes that are returned from the verifier to the signer when the signature is invalid,
the key material is inappropriate, the validity time window is out of specification, a component value
cannot be calculated, or any other errors occur during the signature verification process. For example, if a
signature is being used as an authentication mechanism, an HTTP status code of 401 (Unauthorized) or 403
(Forbidden) could be appropriate. If the response is from an HTTP API, a response with an HTTP status
code such as 400 (Bad Request) could include more details [RFC7807] [RFC9457], such as an indicator
that the wrong key material was used.
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When choosing these parameters, an application of HTTP message signatures has to ensure that the verifier will
have access to all required information needed to recreate the signature base. For example, a server behind a
reverse proxy would need to know the original request URI to make use of the derived component @target-
uri, even though the apparent target URI would be changed by the reverse proxy (see also Section 7.4.3).
Additionally, an application using signatures in responses would need to ensure that clients receiving signed
responses have access to all the signed portions of the message, including any portions of the request that were
signed by the server using the req ("request-response") parameter (Section 2.4).

Details regarding this kind of profiling are within the purview of the application and outside the scope of this
specification; however, some additional considerations are discussed in Section 7. In particular, when choosing
the required set of component identifiers, care has to be taken to make sure that the coverage is sufficient
for the application, as discussed in Sections 7.2.1 and 7.2.8. This specification defines only part of a full
security system for an application. When building a complete security system based on this tool, it is important
to perform a security analysis of the entire system, of which HTTP message signatures is a part. Historical
systems, such as AWS Signature Version 4 [AWS-SIGv4], can provide inspiration and examples of how to
apply similar mechanisms to an application, though review of such historical systems does not negate the need
for a security analysis of an application of HTTP message signatures.

Backman, et al. Expires August 2024 [Page 10]



RFC 9421 HTTP Message Signatures February 2024

2.  HTTP Message Components

In order to allow signers and verifiers to establish which components are covered by a signature, this document
defines component identifiers for components covered by an HTTP message signature, a set of rules for
deriving and canonicalizing the values associated with these component identifiers from the HTTP message,
and the means for combining these canonicalized values into a signature base.

The signature context for deriving these values MUST be accessible to both the signer and the verifier of the
message. The context MUST be the same across all components in a given signature. For example, it would
be an error to use the raw query string for the @query derived component but combined query and form
parameters for the @query-param derived component. For more considerations regarding the message
component context, see Section 7.4.3.

A component identifier is composed of a component name and any parameters associated with that name.
Each component name is either an HTTP field name (Section 2.1) or a registered derived component name
(Section 2.2). The possible parameters for a component identifier are dependent on the component identifier.
The "HTTP Signature Component Parameters" registry, which catalogs all possible parameters, is defined in
Section 6.5.

Within a single list of covered components, each component identifier MUST occur only once. One component
identifier is distinct from another if the component name differs or if any of the parameters differ for the same
component name. Multiple component identifiers having the same component name MAY be included if they
have parameters that make them distinct, such as "foo";bar and "foo";baz. The order of parameters
MUST be preserved when processing a component identifier (such as when parsing during verification), but the
order of parameters is not significant when comparing two component identifiers for equality checks. That is
to say, "foo";bar;baz cannot be in the same message as "foo";baz;bar, since these two component
identifiers are equivalent, but a system processing one form is not allowed to transform it into the other form.

The component value associated with a component identifier is defined by the identifier itself. Component
values MUST NOT contain newline (\n) characters. Some HTTP message components can undergo
transformations that change the bitwise value without altering the meaning of the component's value (for
example, when combining field values). Message component values therefore need to be canonicalized before
they are signed, to ensure that a signature can be verified despite such intermediary transformations. This
document defines rules for each component identifier that transform the identifier's associated component value
into such a canonical form.

The following sections define component identifier names, their parameters, their associated values, and the
canonicalization rules for their values. The method for combining message components into the signature base
is defined in Section 2.5.

2.1.  HTTP Fields

The component name for an HTTP field is the lowercased form of its field name as defined in Section 5.1 of
[HTTP]. While HTTP field names are case insensitive, implementations MUST use lowercased field names
(e.g., content-type, date, etag) when using them as component names.

The component value for an HTTP field is the field value for the named field as defined in Section 5.5 of
[HTTP]. The field value MUST be taken from the named header field of the target message unless this
behavior is overridden by additional parameters and rules, such as the req and tr flags, below. For most
fields, the field value is an ASCII string as recommended by [HTTP], and the component value is exactly
that string. Other encodings could exist in some implementations, and all non-ASCII field values MUST be
encoded to ASCII before being added to the signature base. The bs parameter, as described in Section 2.1.3,
provides a method for wrapping such problematic field values.

Unless overridden by additional parameters and rules, HTTP field values MUST be combined into a single
value as defined in Section 5.2 of [HTTP] to create the component value. Specifically, HTTP fields sent as
multiple fields MUST be combined by concatenating the values using a single comma and a single space as a
separator ("," + " "). Note that intermediaries are allowed to combine values of HTTP fields with any amount
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of whitespace between the commas, and if this behavior is not accounted for by the verifier, the signature can
fail, since the signer and verifier will see a different component value in their respective signature bases. For
robustness, it is RECOMMENDED that signed messages include only a single instance of any field covered
under the signature, particularly with the value for any list-based fields serialized using the algorithm below.
This approach increases the chances of the field value remaining untouched through intermediaries. Where that
approach is not possible and multiple instances of a field need to be sent separately, it is RECOMMENDED
that signers and verifiers process any list-based fields taking all individual field values and combining them
based on the strict algorithm below, to counter possible intermediary behavior. When the field in question is a
Structured Field of type List or Dictionary, this effect can be accomplished more directly by requiring the strict
Structured Field serialization of the field value, as described in Section 2.1.1.

Note that some HTTP fields, such as Set-Cookie [COOKIE], do not follow a syntax that allows for the
combination of field values in this manner (such that the combined output is unambiguous from multiple
inputs). Even though the component value is never parsed by the message signature process and is used only
as part of the signature base (Section 2.5), caution needs to be taken when including such fields in signatures,
since the combined value could be ambiguous. The bs parameter, as described in Section 2.1.3, provides a
method for wrapping such problematic fields. See Section 7.5.6 for more discussion regarding this issue.

If the correctly combined value is not directly available for a given field by an implementation, the following
algorithm will produce canonicalized results for list-based fields:

1. Create an ordered list of the field values of each instance of the field in the message, in the order they occur
(or will occur) in the message.

2. Strip leading and trailing whitespace from each item in the list. Note that since HTTP field values are not
allowed to contain leading and trailing whitespace, this would be a no-op in a compliant implementation.

3. Remove any obsolete line folding within the line, and replace it with a single space (" "), as discussed in
Section 5.2 of [HTTP/1.1]. Note that this behavior is specific to HTTP/1.1 and does not apply to other
versions of the HTTP specification, which do not allow internal line folding.

4. Concatenate the list of values with a single comma (",") and a single space (" ") between each item.

The resulting string is the component value for the field.

Note that some HTTP fields have values with multiple valid serializations that have equivalent semantics, such
as allowing case-insensitive values that intermediaries could change. Applications signing and processing such
fields MUST consider how to handle the values of such fields to ensure that the signer and verifier can derive
the same value, as discussed in Section 7.5.2.

The following are non-normative examples of component values for header fields, given the following example
HTTP message fragment:

Host: www.example.com
Date: Tue, 20 Apr 2021 02:07:56 GMT
X-OWS-Header:   Leading and trailing whitespace.
X-Obs-Fold-Header: Obsolete
    line folding.
Cache-Control: max-age=60
Cache-Control:    must-revalidate
Example-Dict:  a=1,    b=2;x=1;y=2,   c=(a   b   c)

The following example shows the component values for these example header fields, presented using the
signature base format defined in Section 2.5:
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"host": www.example.com
"date": Tue, 20 Apr 2021 02:07:56 GMT
"x-ows-header": Leading and trailing whitespace.
"x-obs-fold-header": Obsolete line folding.
"cache-control": max-age=60, must-revalidate
"example-dict": a=1,    b=2;x=1;y=2,   c=(a   b   c)

Empty HTTP fields can also be signed when present in a message. The canonicalized value is the empty string.
This means that the following empty header field, with (SP) indicating a single trailing space character before
the empty field value:

X-Empty-Header:(SP)

is serialized by the signature base generation algorithm (Section 2.5) with an empty string value following the
colon and space added after the component identifier.

"x-empty-header":(SP)

Any HTTP field component identifiers MAY have the following parameters in specific circumstances, each
described in detail in their own sections:

sf A Boolean flag indicating that the component value is serialized using strict encoding of the Structured
Field value (Section 2.1.1).

key A String parameter used to select a single member value from a Dictionary Structured Field (Section
2.1.2).

bs A Boolean flag indicating that individual field values are encoded using Byte Sequence data structures
before being combined into the component value (Section 2.1.3).

req A Boolean flag for signed responses indicating that the component value is derived from the request that
triggered this response message and not from the response message directly. Note that this parameter can
also be applied to any derived component identifiers that target the request (Section 2.4).

tr A Boolean flag indicating that the field value is taken from the trailers of the message as defined in
Section 6.5 of [HTTP]. If this flag is absent, the field value is taken from the header fields of the message
as defined in Section 6.3 of [HTTP] (Section 2.1.4).

Multiple parameters MAY be specified together, though some combinations are redundant or incompatible. For
example, the sf parameter's functionality is already covered when the key parameter is used on a Dictionary
item, since key requires strict serialization of the value. The bs parameter, which requires the raw bytes of the
field values from the message, is not compatible with the use of the sf or key parameters, which require the
parsed data structures of the field values after combination.

Additional parameters can be defined in the "HTTP Signature Component Parameters" registry established in
Section 6.5.

2.1.1.  Strict Serialization of HTTP Structured Fields

If the value of an HTTP field is known by the application to be a Structured Field type (as defined in
[STRUCTURED-FIELDS] or its extensions or updates) and the expected type of the Structured Field is known,
the signer MAY include the sf parameter in the component identifier. If this parameter is included with a
component identifier, the HTTP field value MUST be serialized using the formal serialization rules specified
in Section 4 of [STRUCTURED-FIELDS] (or the applicable formal serialization section of its extensions or
updates) applicable to the type of the HTTP field. Note that this process will replace any optional internal
whitespace with a single space character, among other potential transformations of the value.

If multiple field values occur within a message, these values MUST be combined into a single List or
Dictionary structure before serialization.
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If the application does not know the type of the field or does not know how to serialize the type of the field, the
use of this flag will produce an error. As a consequence, the signer can only reliably sign fields using this flag
when the verifier's system knows the type as well.

For example, the following Dictionary field is a valid serialization:

Example-Dict:  a=1,    b=2;x=1;y=2,   c=(a   b   c)

If included in the signature base without parameters, its value would be:

"example-dict": a=1,    b=2;x=1;y=2,   c=(a   b   c)

However, if the sf parameter is added, the value is reserialized as follows:

"example-dict";sf: a=1, b=2;x=1;y=2, c=(a b c)

The resulting string is used as the component value; see Section 2.1.

2.1.2.  Dictionary Structured Field Members

If a given field is known by the application to be a Dictionary Structured Field, an individual member in the
value of that Dictionary is identified by using the parameter key and the Dictionary member key as a String
value.

If multiple field values occur within a message, these values MUST be combined into a single Dictionary
structure before serialization.

An individual member value of a Dictionary Structured Field is canonicalized by applying the serialization
algorithm described in Section 4.1.2 of [STRUCTURED-FIELDS] on the member_value and its parameters,
not including the Dictionary key itself. Specifically, the value is serialized as an Item or Inner List (the two
possible values of a Dictionary member), with all parameters and possible subfields serialized using the strict
serialization rules defined in Section 4 of [STRUCTURED-FIELDS] (or the applicable section of its extensions
or updates).

Each parameterized key for a given field MUST NOT appear more than once in the signature base.
Parameterized keys MAY appear in any order in the signature base, regardless of the order they occur in the
source Dictionary.

If a Dictionary key is named as a covered component but it does not occur in the Dictionary, this MUST cause
an error in the signature base generation.

The following are non-normative examples of canonicalized values for Dictionary Structured Field members,
given the following example header field, whose value is known by the application to be a Dictionary:

Example-Dict:  a=1, b=2;x=1;y=2, c=(a   b    c), d

The following example shows canonicalized values for different component identifiers of this field, presented
using the signature base format discussed in Section 2.5:

"example-dict";key="a": 1
"example-dict";key="d": ?1
"example-dict";key="b": 2;x=1;y=2
"example-dict";key="c": (a b c)

Note that the value for key="c" has been reserialized according to the strict member_value algorithm, and
the value for key="d" has been serialized as a Boolean value.
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2.1.3.  Binary-Wrapped HTTP Fields

If the value of the HTTP field in question is known by the application to cause problems with serialization,
particularly with the combination of multiple values into a single line as discussed in Section 7.5.6, the signer
SHOULD include the bs parameter in a component identifier to indicate that the values of the field need to be
wrapped as binary structures before being combined.

If this parameter is included with a component identifier, the component value MUST be calculated using the
following algorithm:

1. Let the input be the ordered set of values for a field, in the order they appear in the message.

2. Create an empty List for accumulating processed field values.

3. For each field value in the set:

4. The intermediate result is a List of Byte Sequence values.

5. Follow the strict serialization of a List as described in Section 4.1.1 of [STRUCTURED-FIELDS], and
return this output.

For example, the following field with internal commas prevents the distinct field values from being safely
combined:

Example-Header: value, with, lots
Example-Header: of, commas

In our example, the same field can be sent with a semantically different single value:

Example-Header: value, with, lots, of, commas

Both of these versions are treated differently by the application. However, if included in the signature base
without parameters, the component value would be the same in both cases:

"example-header": value, with, lots, of, commas

However, if the bs parameter is added, the two separate instances are encoded and serialized as follows:

"example-header";bs: :dmFsdWUsIHdpdGgsIGxvdHM=:, :b2YsIGNvbW1hcw==:

For the single-instance field above, the encoding with the bs parameter is:

"example-header";bs: :dmFsdWUsIHdpdGgsIGxvdHMsIG9mLCBjb21tYXM=:

This component value is distinct from the multiple-instance field above, preventing a collision that could
potentially be exploited.

2.1.4.  Trailer Fields

If the signer wants to include a trailer field in the signature, the signer MUST include the tr Boolean
parameter to indicate that the value MUST be taken from the trailer fields and not from the header fields.

For example, given the following message:
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HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Encoding: chunked
Trailer: Expires

4
HTTP
7
Message
a
Signatures
0
Expires: Wed, 9 Nov 2022 07:28:00 GMT

The signer decides to add both the Trailer header field and the Expires trailer field to the signature base, along
with the status code derived component:

"@status": 200
"trailer": Expires
"expires";tr: Wed, 9 Nov 2022 07:28:00 GMT

If a field is available as both a header and a trailer in a message, both values MAY be signed, but the values
MUST be signed separately. The values of header fields and trailer fields of the same name MUST NOT be
combined for purposes of the signature.

Since trailer fields could be merged into the header fields or dropped entirely by intermediaries as per Section
6.5.1 of [HTTP], it is NOT RECOMMENDED to include trailers in the signature unless the signer knows that
the verifier will have access to the values of the trailers as sent.

2.2.  Derived Components

In addition to HTTP fields, there are a number of different components that can be derived from the control
data, signature context, or other aspects of the HTTP message being signed. Such derived components can be
included in the signature base by defining a component name, possible parameters, message targets, and the
derivation method for its component value.

Derived component names MUST start with the "at" (@) character. This differentiates derived component
names from HTTP field names, which cannot contain the @ character as per Section 5.1 of [HTTP]. Processors
of HTTP message signatures MUST treat derived component names separately from field names, as discussed
in Section 7.5.1.

This specification defines the following derived components:

@method The method used for a request (Section 2.2.1).

@target-uri The full target URI for a request (Section 2.2.2).

@authority The authority of the target URI for a request (Section 2.2.3).

@scheme The scheme of the target URI for a request (Section 2.2.4).

@request-target The request target (Section 2.2.5).

@path The absolute path portion of the target URI for a request (Section 2.2.6).

@query The query portion of the target URI for a request (Section 2.2.7).

@query-param A parsed and encoded query parameter of the target URI for a request (Section
2.2.8).

@status The status code for a response (Section 2.2.9).
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Additional derived component names are defined in the "HTTP Signature Derived Component Names" registry
(Section 6.4).

Derived component values are taken from the context of the target message for the signature. This context
includes information about the message itself, such as its control data, as well as any additional state and
context held by the signer or verifier. In particular, when signing a response, the signer can include any derived
components from the originating request by using the req parameter (Section 2.4).

request: Values derived from, and results applied to, an HTTP request message as
described in Section 3.4 of [HTTP]. If the target message of the signature
is a response, derived components that target request messages can be
included by using the req parameter as defined in Section 2.4.

response: Values derived from, and results applied to, an HTTP response message as
described in Section 3.4 of [HTTP].

request, response: Values derived from, and results applied to, either a request message or a
response message.

A derived component definition MUST define all target message types to which it can be applied.

Derived component values MUST be limited to printable characters and spaces and MUST NOT contain any
newline characters. Derived component values MUST NOT start or end with whitespace characters.

2.2.1.  Method

The @method derived component refers to the HTTP method of a request message. The component value
is canonicalized by taking the value of the method as a string. Note that the method name is case sensitive
as per [HTTP], Section 9.1. While conventionally standardized method names are uppercase [ASCII], no
transformation to the input method value's case is performed.

For example, the following request message:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @method component value:

POST

and the following signature base line:

"@method": POST

2.2.2.  Target URI

The @target-uri derived component refers to the target URI of a request message. The component value is
the target URI of the request ([HTTP], Section 7.1), assembled from all available URI components, including
the authority.

For example, the following message sent over HTTPS:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @target-uri component value:

https://www.example.com/path?param=value

and the following signature base line:

Backman, et al. Expires August 2024 [Page 17]

https://www.rfc-editor.org/rfc/rfc9110.html#section-3.4
https://www.rfc-editor.org/rfc/rfc9110.html#section-3.4
https://www.rfc-editor.org/rfc/rfc9110.html#section-9.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-7.1


RFC 9421 HTTP Message Signatures February 2024

"@target-uri": https://www.example.com/path?param=value

2.2.3.  Authority

The @authority derived component refers to the authority component of the target URI of the HTTP
request message, as defined in [HTTP], Section 7.2. In HTTP/1.1, this is usually conveyed using the Host
header field, while in HTTP/2 and HTTP/3 it is conveyed using the :authority pseudo-header. The value is the
fully qualified authority component of the request, comprised of the host and, optionally, port of the request
target, as a string. The component value MUST be normalized according to the rules provided in [HTTP],
Section 4.2.3. Namely, the hostname is normalized to lowercase, and the default port is omitted.

For example, the following request message:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @authority component value:

www.example.com

and the following signature base line:

"@authority": www.example.com

The @authority derived component SHOULD be used instead of signing the Host header field directly. See
Section 7.2.4.

2.2.4.  Scheme

The @scheme derived component refers to the scheme of the target URL of the HTTP request message. The
component value is the scheme as a lowercase string as defined in [HTTP], Section 4.2. While the scheme itself
is case insensitive, it MUST be normalized to lowercase for inclusion in the signature base.

For example, the following request message sent over plain HTTP:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @scheme component value:

http

and the following signature base line:

"@scheme": http

2.2.5.  Request Target

The @request-target derived component refers to the full request target of the HTTP request message, as
defined in [HTTP], Section 7.1. The component value of the request target can take different forms, depending
on the type of request, as described below.

For HTTP/1.1, the component value is equivalent to the request target portion of the request line. However, this
value is more difficult to reliably construct in other versions of HTTP. Therefore, it is NOT RECOMMENDED
that this component be used when versions of HTTP other than 1.1 might be in use.

The origin form value is a combination of the absolute path and query components of the request URL.

For example, the following request message:
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POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @request-target component value:

/path?param=value

and the following signature base line:

"@request-target": /path?param=value

The following request to an HTTP proxy with the absolute-form value, containing the fully qualified target
URI:

GET https://www.example.com/path?param=value HTTP/1.1

would result in the following @request-target component value:

https://www.example.com/path?param=value

and the following signature base line:

"@request-target": https://www.example.com/path?param=value

The following CONNECT request with an authority-form value, containing the host and port of the target:

CONNECT www.example.com:80 HTTP/1.1
Host: www.example.com

would result in the following @request-target component value:

www.example.com:80

and the following signature base line:

"@request-target": www.example.com:80

The following OPTIONS request message with the asterisk-form value, containing a single asterisk (*)
character:

OPTIONS * HTTP/1.1
Host: www.example.com

would result in the following @request-target component value:

*

and the following signature base line:

"@request-target": *

2.2.6.  Path

The @path derived component refers to the target path of the HTTP request message. The component value
is the absolute path of the request target defined by [URI], with no query component and no trailing question
mark (?) character. The value is normalized according to the rules provided in [HTTP], Section 4.2.3. Namely,
an empty path string is normalized as a single slash (/) character. Path components are represented by their
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values before decoding any percent-encoded octets, as described in the simple string comparison rules provided
in Section 6.2.1 of [URI].

For example, the following request message:

GET /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @path component value:

/path

and the following signature base line:

"@path": /path

2.2.7.  Query

The @query derived component refers to the query component of the HTTP request message. The component
value is the entire normalized query string defined by [URI], including the leading ? character. The value is
read using the simple string comparison rules provided in Section 6.2.1 of [URI]. Namely, percent-encoded
octets are not decoded.

For example, the following request message:

GET /path?param=value&foo=bar&baz=bat%2Dman HTTP/1.1
Host: www.example.com

would result in the following @query component value:

?param=value&foo=bar&baz=bat%2Dman

and the following signature base line:

"@query": ?param=value&foo=bar&baz=bat%2Dman

The following request message:

POST /path?queryString HTTP/1.1
Host: www.example.com

would result in the following @query component value:

?queryString

and the following signature base line:

"@query": ?queryString

Just like including an empty path component, the signer can include an empty query component to indicate
that this component is not used in the message. If the query string is absent from the request message, the
component value is the leading ? character alone:

?

resulting in the following signature base line:

"@query": ?
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2.2.8.  Query Parameters

If the query portion of a request target URI uses HTML form parameters in the format defined in Section 5
of [HTMLURL], the @query-param derived component allows addressing of these individual query
parameters. The query parameters MUST be parsed according to Section 5.1 of [HTMLURL], resulting in a list
of (nameString, valueString) tuples. The REQUIRED name parameter of each component identifier
contains the encoded nameString of a single query parameter as a String value. The component value of a
single named parameter is the encoded valueString of that single query parameter. Several different named
query parameters MAY be included in the covered components. Single named parameters MAY occur in any
order in the covered components, regardless of the order they occur in the query string.

The value of the name parameter and the component value of a single named parameter are calculated via the
following process:

1. Parse the nameString or valueString of the named query parameter defined by Section 5.1 of
[HTMLURL]; this is the value after percent-encoded octets are decoded.

2. Encode the nameString or valueString using the "percent-encode after encoding" process defined
by Section 5.2 of [HTMLURL]; this results in an ASCII string [ASCII].

3. Output the ASCII string.

Note that the component value does not include any leading question mark (?) characters, equals sign (=)
characters, or separating ampersand (&) characters. Named query parameters with an empty valueString
have an empty string as the component value. Note that due to inconsistencies in implementations, some query
parameter parsing libraries drop such empty values.

If a query parameter is named as a covered component but it does not occur in the query parameters, this
MUST cause an error in the signature base generation.

For example, for the following request:

GET /path?param=value&foo=bar&baz=batman&qux= HTTP/1.1
Host: www.example.com

Indicating the baz, qux, and param named query parameters would result in the following @query-param
component values:

baz: batman

qux: an empty string

param: value

and the following signature base lines, with (SP) indicating a single trailing space character before the empty
component value:

"@query-param";name="baz": batman
"@query-param";name="qux":(SP)
"@query-param";name="param": value

This derived component has some limitations. Specifically, the algorithms provided in Section 5 of
[HTMLURL] only support query parameters using percent-escaped UTF-8 encoding. Other encodings are not
supported. Additionally, multiple instances of a named parameter are not reliably supported in the wild. If a
parameter name occurs multiple times in a request, the named query parameter MUST NOT be included. If
multiple parameters are common within an application, it is RECOMMENDED to sign the entire query string
using the @query component identifier defined in Section 2.2.7.

The encoding process allows query parameters that include newlines or other problematic characters in their
values, or with alternative encodings such as using the plus (+) character to represent spaces. For the query
parameters in this message:
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NOTE: '\' line wrapping per RFC 8792

GET /parameters?var=this%20is%20a%20big%0Amultiline%20value&\
  bar=with+plus+whitespace&fa%C3%A7ade%22%3A%20=something HTTP/1.1
Host: www.example.com
Date: Tue, 20 Apr 2021 02:07:56 GMT

The resulting values are encoded as follows:

"@query-param";name="var": this%20is%20a%20big%0Amultiline%20value
"@query-param";name="bar": with%20plus%20whitespace
"@query-param";name="fa%C3%A7ade%22%3A%20": something

If the encoding were not applied, the resultant values would be:

"@query-param";name="var": this is a big
multiline value
"@query-param";name="bar": with plus whitespace
"@query-param";name="façade\": ": something

This base string contains characters that violate the constraints on component names and values and is therefore
invalid.

2.2.9.  Status Code

The @status derived component refers to the three-digit numeric HTTP status code of a response message
as defined in [HTTP], Section 15. The component value is the serialized three-digit integer of the HTTP status
code, with no descriptive text.

For example, the following response message:

HTTP/1.1 200 OK
Date: Fri, 26 Mar 2010 00:05:00 GMT

would result in the following @status component value:

200

and the following signature base line:

"@status": 200

The @status component identifier MUST NOT be used in a request message.

2.3.  Signature Parameters

HTTP message signatures have metadata properties that provide information regarding the signature's
generation and verification, consisting of the ordered set of covered components and the ordered set of
parameters, where the parameters include a timestamp of signature creation, identifiers for verification key
material, and other utilities. This metadata is represented by a special message component in the signature base
for signature parameters; this special message component is treated slightly differently from other message
components. Specifically, the signature parameters message component is REQUIRED as the last line of the
signature base (Section 2.5), and the component identifier MUST NOT be enumerated within the set of covered
components for any signature, including itself.

The signature parameters component name is @signature-params.
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The signature parameters component value is the serialization of the signature parameters for this signature,
including the covered components ordered set with all associated parameters. These parameters include any of
the following:

created: Creation time as a UNIX timestamp value of type Integer.
Sub-second precision is not supported. The inclusion of this
parameter is RECOMMENDED.

expires: Expiration time as a UNIX timestamp value of type Integer.
Sub-second precision is not supported.

nonce: A random unique value generated for this signature as a
String value.

alg: The HTTP message signature algorithm from the "HTTP
Signature Algorithms" registry, as a String value.

keyid: The identifier for the key material as a String value.

tag: An application-specific tag for the signature as a String value.
This value is used by applications to help identify signatures
relevant for specific applications or protocols.

Additional parameters can be defined in the "HTTP Signature Metadata Parameters" registry (Section 6.3).
Note that the parameters are not in any general order, but once an ordering is chosen for a given set of
parameters, it cannot be changed without altering the signature parameters value.

The signature parameters component value is serialized as a parameterized Inner List using the rules provided
in Section 4 of [STRUCTURED-FIELDS] as follows:

1. Let the output be an empty string.

2. Determine an order for the component identifiers of the covered components, not including the
@signature-params component identifier itself. Once this order is chosen, it cannot be changed. This
order MUST be the same order as that used in creating the signature base (Section 2.5).

3. Serialize the component identifiers of the covered components, including all parameters, as an ordered
Inner List of String values according to Section 4.1.1.1 of [STRUCTURED-FIELDS]; then, append this to
the output. Note that the component identifiers can include their own parameters, and these parameters are
ordered sets. Once an order is chosen for a component's parameters, the order cannot be changed.

4. Determine an order for any signature parameters. Once this order is chosen, it cannot be changed.

5. Append the parameters to the Inner List in order according to Section 4.1.1.2 of [STRUCTURED-
FIELDS], skipping parameters that are not available or not used for this message signature.

6. The output contains the signature parameters component value.

Note that the Inner List serialization from Section 4.1.1.1 of [STRUCTURED-FIELDS] is used for the covered
component value instead of the List serialization from Section 4.1.1 of [STRUCTURED-FIELDS] in order to
facilitate parallelism with this value's inclusion in the Signature-Input field, as discussed in Section 4.1.

This example shows the serialized component value for the parameters of an example message signature:

NOTE: '\' line wrapping per RFC 8792

("@target-uri" "@authority" "date" "cache-control")\
  ;keyid="test-key-rsa-pss";alg="rsa-pss-sha512";\
  created=1618884475;expires=1618884775

Note that an HTTP message could contain multiple signatures (Section 4.3), but only the signature parameters
used for a single signature are included in a given signature parameters entry.
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2.4.  Signing Request Components in a Response Message

When a request message results in a signed response message, the signer can include portions of the request
message in the signature base by adding the req parameter to the component identifier.

req A Boolean flag indicating that the component value is derived from the request that triggered this
response message and not from the response message directly.

This parameter can be applied to both HTTP fields and derived components that target the request, with the
same semantics. The component value for a message component using this parameter is calculated in the same
manner as it is normally, but data is pulled from the request message instead of the target response message to
which the signature is applied.

Note that the same component name MAY be included with and without the req parameter in a single
signature base, indicating the same named component from both the request message and the response
message.

The req parameter MAY be combined with other parameters as appropriate for the component identifier, such
as the key parameter for a Dictionary field.

For example, when serving a response for this request:

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Content-Type: application/json
Content-Length: 18

{"hello": "world"}

This would result in the following unsigned response message:

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 503 Service Unavailable
Date: Tue, 20 Apr 2021 02:07:56 GMT
Content-Type: application/json
Content-Length: 62
Content-Digest: sha-512=:0Y6iCBzGg5rZtoXS95Ijz03mslf6KAMCloESHObfwn\
  HJDbkkWWQz6PhhU9kxsTbARtY2PTBOzq24uJFpHsMuAg==:

{"busy": true, "message": "Your call is very important to us"}

The server signs the response with its own key, including the @status code and several header fields in
the covered components. While this covers a reasonable amount of the response for this application, the
server additionally includes several components derived from the original request message that triggered
this response. In this example, the server includes the method, authority, path, and content digest from the
request in the covered components of the response. The Content-Digest for both the request and the response
is included under the response signature. For the application in this example, the query is deemed not to be
relevant to the response and is therefore not covered. Other applications would make different decisions based
on application needs, as discussed in Section 1.4.

The signature base for this example is:
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NOTE: '\' line wrapping per RFC 8792

"@status": 503
"content-digest": sha-512=:0Y6iCBzGg5rZtoXS95Ijz03mslf6KAMCloESHObf\
  wnHJDbkkWWQz6PhhU9kxsTbARtY2PTBOzq24uJFpHsMuAg==:
"content-type": application/json
"@authority";req: example.com
"@method";req: POST
"@path";req: /foo
"content-digest";req: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A\
  2svX+TaPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
"@signature-params": ("@status" "content-digest" "content-type" \
  "@authority";req "@method";req "@path";req "content-digest";req)\
  ;created=1618884479;keyid="test-key-ecc-p256"

The signed response message is:

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 503 Service Unavailable
Date: Tue, 20 Apr 2021 02:07:56 GMT
Content-Type: application/json
Content-Length: 62
Content-Digest: sha-512=:0Y6iCBzGg5rZtoXS95Ijz03mslf6KAMCloESHObfwn\
  HJDbkkWWQz6PhhU9kxsTbARtY2PTBOzq24uJFpHsMuAg==:
Signature-Input: reqres=("@status" "content-digest" "content-type" \
  "@authority";req "@method";req "@path";req "content-digest";req)\
  ;created=1618884479;keyid="test-key-ecc-p256"
Signature: reqres=:dMT/A/76ehrdBTD/2Xx8QuKV6FoyzEP/I9hdzKN8LQJLNgzU\
  4W767HK05rx1i8meNQQgQPgQp8wq2ive3tV5Ag==:

{"busy": true, "message": "Your call is very important to us"}

Note that the ECDSA signature algorithm in use here is non-deterministic, meaning that a different signature
value will be created every time the algorithm is run. The signature value provided here can be validated
against the given keys, but newly generated signature values are not expected to match the example. See
Section 7.3.5.

Since the component values from the request are not repeated in the response message, the requester MUST
keep the original message component values around long enough to validate the signature of the response that
uses this component identifier parameter. In most cases, this means the requester needs to keep the original
request message around, since the signer could choose to include any portions of the request in its response,
according to the needs of the application. Since it is possible for an intermediary to alter a request message
before it is processed by the server, applications need to take care not to sign such altered values, as the client
would not be able to validate the resulting signature.

It is also possible for a server to create a signed response in response to a signed request. For this example of a
signed request:
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NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Content-Type: application/json
Content-Length: 18
Signature-Input: sig1=("@method" "@authority" "@path" "@query" \
  "content-digest" "content-type" "content-length")\
  ;created=1618884475;keyid="test-key-rsa-pss"
Signature: sig1=:e8UJ5wMiRaonlth5ERtE8GIiEH7Akcr493nQ07VPNo6y3qvjdK\
  t0fo8VHO8xXDjmtYoatGYBGJVlMfIp06eVMEyNW2I4vN7XDAz7m5v1108vGzaDljr\
  d0H8+SJ28g7bzn6h2xeL/8q+qUwahWA/JmC8aOC9iVnwbOKCc0WSrLgWQwTY6VLp4\
  2Qt7jjhYT5W7/wCvfK9A1VmHH1lJXsV873Z6hpxesd50PSmO+xaNeYvDLvVdZlhtw\
  5PCtUYzKjHqwmaQ6DEuM8udRjYsoNqp2xZKcuCO1nKc0V3RjpqMZLuuyVbHDAbCzr\
  0pg2d2VM/OC33JAU7meEjjaNz+d7LWPg==:

{"hello": "world"}

The server could choose to sign portions of this response, including several portions of the request, resulting in
this signature base:

NOTE: '\' line wrapping per RFC 8792

"@status": 503
"content-digest": sha-512=:0Y6iCBzGg5rZtoXS95Ijz03mslf6KAMCloESHObf\
  wnHJDbkkWWQz6PhhU9kxsTbARtY2PTBOzq24uJFpHsMuAg==:
"content-type": application/json
"@authority";req: example.com
"@method";req: POST
"@path";req: /foo
"@query";req: ?param=Value&Pet=dog
"content-digest";req: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A\
  2svX+TaPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
"content-type";req: application/json
"content-length";req: 18
"@signature-params": ("@status" "content-digest" "content-type" \
  "@authority";req "@method";req "@path";req "@query";req \
  "content-digest";req "content-type";req "content-length";req)\
  ;created=1618884479;keyid="test-key-ecc-p256"

and the following signed response:
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NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 503 Service Unavailable
Date: Tue, 20 Apr 2021 02:07:56 GMT
Content-Type: application/json
Content-Length: 62
Content-Digest: sha-512=:0Y6iCBzGg5rZtoXS95Ijz03mslf6KAMCloESHObfwn\
  HJDbkkWWQz6PhhU9kxsTbARtY2PTBOzq24uJFpHsMuAg==:
Signature-Input: reqres=("@status" "content-digest" "content-type" \
  "@authority";req "@method";req "@path";req "@query";req \
  "content-digest";req "content-type";req "content-length";req)\
  ;created=1618884479;keyid="test-key-ecc-p256"
Signature: reqres=:C73J41GVKc+TYXbSobvZf0CmNcptRiWN+NY1Or0A36ISg6ym\
  dRN6ZgR2QfrtopFNzqAyv+CeWrMsNbcV2Ojsgg==:

{"busy": true, "message": "Your call is very important to us"}

Note that the ECDSA signature algorithm in use here is non-deterministic, meaning that a different signature
value will be created every time the algorithm is run. The signature value provided here can be validated
against the given keys, but newly generated signature values are not expected to match the example. See
Section 7.3.5.

Applications signing a response to a signed request SHOULD sign all of the components of the request
signature value to provide sufficient coverage and protection against a class of collision attacks, as discussed in
Section 7.3.7. The server in this example has included all components listed in the Signature-Input field of the
client's signature on the request in the response signature, in addition to components of the response.

While it is syntactically possible to include the Signature and Signature-Input fields of the request message
in the signature components of a response to a message using this mechanism, this practice is NOT
RECOMMENDED. This is because signatures of signatures do not provide transitive coverage of covered
components as one might expect, and the practice is susceptible to several attacks as discussed in Section 7.3.7.
An application that needs to signal successful processing or receipt of a signature would need to carefully
specify alternative mechanisms for sending such a signal securely.

The response signature can only ever cover what is included in the request message when using this flag.
Consequently, if an application needs to include the message content of the request under the signature of its
response, the client needs to include a means for covering that content, such as a Content-Digest field. See the
discussion in Section 7.2.8 for more information.

The req parameter MUST NOT be used for any component in a signature that targets a request message.

2.5.  Creating the Signature Base

The signature base is an ASCII string [ASCII] containing the canonicalized HTTP message components
covered by the signature. The input to the signature base creation algorithm is the ordered set of covered
component identifiers and their associated values, along with any additional signature parameters discussed in
Section 2.3.

Component identifiers are serialized using the strict serialization rules defined by [STRUCTURED-FIELDS],
Section 4. The component identifier has a component name, which is a String Item value serialized using the
sf-string ABNF rule. The component identifier MAY also include defined parameters that are serialized
using the parameters ABNF rule. The signature parameters line defined in Section 2.3 follows this same
pattern, but the component identifier is a String Item with a fixed value and no parameters, and the component
value is always an Inner List with optional parameters.
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Note that this means the serialization of the component name itself is encased in double quotes, with
parameters following as a semicolon-separated list, such as "cache-control", "@authority",
"@signature-params", or "example-dictionary";key="foo".

The output is the ordered set of bytes that form the signature base, which conforms to the following ABNF:

signature-base = *( signature-base-line LF ) signature-params-line
signature-base-line = component-identifier ":" SP
    ( derived-component-value / *field-content )
    ; no obs-fold nor obs-text
component-identifier = component-name parameters
component-name = sf-string
derived-component-value = *( VCHAR / SP )
signature-params-line = DQUOTE "@signature-params" DQUOTE
     ":" SP inner-list

To create the signature base, the signer or verifier concatenates entries for each component identifier in the
signature's covered components (including their parameters) using the following algorithm. All errors produced
as described MUST fail the algorithm immediately, without outputting a signature base.

1. Let the output be an empty string.

2. For each message component item in the covered components set (in order):

3. Append the signature parameters component (Section 2.3) according to the signature-params-line
rule as follows:

4. Produce an error if the output string contains any non-ASCII characters [ASCII].

5. Return the output string.

If covered components reference a component identifier that cannot be resolved to a component value in the
message, the implementation MUST produce an error and not create a signature base. Such situations include,
but are not limited to, the following:

• The signer or verifier does not understand the derived component name.

• The component name identifies a field that is not present in the message or whose value is malformed.

• The component identifier includes a parameter that is unknown or does not apply to the component
identifier to which it is attached.

• The component identifier indicates that a Structured Field serialization is used (via the sf parameter), but
the field in question is known to not be a Structured Field or the type of Structured Field is not known to the
implementation.

• The component identifier is a Dictionary member identifier that references a field that is not present in the
message, that is not a Dictionary Structured Field, or whose value is malformed.

• The component identifier is a Dictionary member identifier or a named query parameter identifier that
references a member that is not present in the component value or whose value is malformed. For example,
the identifier is "example-dict";key="c", and the value of the Example-Dict header field is a=1,
b=2, which does not have the c value.

In the following non-normative example, the HTTP message being signed is the following request:
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NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Content-Length: 18

{"hello": "world"}

The covered components consist of the @method, @authority, and @path derived components followed
by the Content-Digest, Content-Length, and Content-Type HTTP header fields, in order. The
signature parameters consist of a creation timestamp of 1618884473 and a key identifier of test-key-
rsa-pss. Note that no explicit alg parameter is given here, since the verifier is known by the application
to use the RSA-PSS algorithm based on the identified key. The signature base for this message with these
parameters is:

NOTE: '\' line wrapping per RFC 8792

"@method": POST
"@authority": example.com
"@path": /foo
"content-digest": sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX\
  +TaPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
"content-length": 18
"content-type": application/json
"@signature-params": ("@method" "@authority" "@path" \
  "content-digest" "content-length" "content-type")\
  ;created=1618884473;keyid="test-key-rsa-pss"

Figure 1: Non-normative Example Signature Base

Note that the example signature base above does not include the final newline that ends the displayed example,
nor do other example signature bases displayed elsewhere in this specification.

Backman, et al. Expires August 2024 [Page 29]



RFC 9421 HTTP Message Signatures February 2024

3.  HTTP Message Signatures

An HTTP message signature is a signature over a string generated from a subset of the components of an
HTTP message in addition to metadata about the signature itself. When successfully verified against an HTTP
message, an HTTP message signature provides cryptographic proof that the message is semantically equivalent
to the message for which the signature was generated, with respect to the subset of message components that
was signed.

3.1.  Creating a Signature

Creation of an HTTP message signature is a process that takes as its input the signature context (including the
target message) and the requirements for the application. The output is a signature value and set of signature
parameters that can be communicated to the verifier by adding them to the message.

In order to create a signature, a signer MUST apply the following algorithm:

1. The signer chooses an HTTP signature algorithm and key material for signing from the set of potential
signing algorithms. The set of potential algorithms is determined by the application and is out of scope for
this document. The signer MUST choose key material that is appropriate for the signature's algorithm and
that conforms to any requirements defined by the algorithm, such as key size or format. The mechanism by
which the signer chooses the algorithm and key material is out of scope for this document.

2. The signer sets the signature's creation time to the current time.

3. If applicable, the signer sets the signature's expiration time property to the time at which the signature
is to expire. The expiration is a hint to the verifier, expressing the time at which the signer is no longer
willing to vouch for the signature. An appropriate expiration length, and the processing requirements of this
parameter, are application specific.

4. The signer creates an ordered set of component identifiers representing the message components to be
covered by the signature and attaches signature metadata parameters to this set. The serialized value of this
set is later used as the value of the Signature-Input field as described in Section 4.1.

5. The signer creates the signature base using these parameters and the signature base creation algorithm
(Section 2.5).

6. The signer uses the HTTP_SIGN primitive function to sign the signature base with the chosen signing
algorithm using the key material chosen by the signer. The HTTP_SIGN primitive and several concrete
applications of signing algorithms are defined in Section 3.3.

7. The byte array output of the signature function is the HTTP message signature output value to be included
in the Signature field as defined in Section 4.2.

For example, given the HTTP message and signature parameters in the example in Section 2.5, the example
signature base is signed with the test-key-rsa-pss key (see Appendix B.1.2) and the RSASSA-PSS
algorithm described in Section 3.3.1, giving the following message signature output value, encoded in Base64:

NOTE: '\' line wrapping per RFC 8792

HIbjHC5rS0BYaa9v4QfD4193TORw7u9edguPh0AW3dMq9WImrlFrCGUDih47vAxi4L2\
YRZ3XMJc1uOKk/J0ZmZ+wcta4nKIgBkKq0rM9hs3CQyxXGxHLMCy8uqK488o+9jrptQ\
+xFPHK7a9sRL1IXNaagCNN3ZxJsYapFj+JXbmaI5rtAdSfSvzPuBCh+ARHBmWuNo1Uz\
VVdHXrl8ePL4cccqlazIJdC4QEjrF+Sn4IxBQzTZsL9y9TP5FsZYzHvDqbInkTNigBc\
E9cKOYNFCn4D/WM7F6TNuZO9EgtzepLWcjTymlHzK7aXq6Am6sfOrpIC49yXjj3ae6H\
RalVc/g==

Figure 2: Non-normative Example Signature Value

Note that the RSA-PSS algorithm in use here is non-deterministic, meaning that a different signature value will
be created every time the algorithm is run. The signature value provided here can be validated against the given
keys, but newly generated signature values are not expected to match the example. See Section 7.3.5.
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3.2.  Verifying a Signature

Verification of an HTTP message signature is a process that takes as its input the signature context (including
the target message, particularly its Signature and Signature-Input fields) and the requirements for the
application. The output of the verification is either a positive verification or an error.

In order to verify a signature, a verifier MUST apply the following algorithm:

1. Parse the Signature and Signature-Input fields as described in Sections 4.1 and 4.2, and extract the
signatures to be verified and their labels.

2. Parse the values of the chosen Signature-Input field as a parameterized Inner List to get the ordered list of
covered components and the signature parameters for the signature to be verified.

3. Parse the value of the corresponding Signature field to get the byte array value of the signature to be
verified.

4. Examine the signature parameters to confirm that the signature meets the requirements described in this
document, as well as any additional requirements defined by the application such as which message
components are required to be covered by the signature (Section 3.2.1).

5. Determine the verification key material for this signature. If the key material is known through external
means such as static configuration or external protocol negotiation, the verifier will use the applicable
technique to obtain the key material from this external knowledge. If the key is identified in the signature
parameters, the verifier will dereference the key identifier to appropriate key material to use with the
signature. The verifier has to determine the trustworthiness of the key material for the context in which the
signature is presented. If a key is identified that the verifier does not know or trust for this request or that
does not match something preconfigured, the verification MUST fail.

6. Determine the algorithm to apply for verification:

7. Use the received HTTP message and the parsed signature parameters to recreate the signature base, using
the algorithm defined in Section 2.5. The value of the @signature-params input is the value of the
Signature-Input field for this signature serialized according to the rules described in Section 2.3. Note that
this does not include the signature's label from the Signature-Input field.

8. If the key material is appropriate for the algorithm, apply the appropriate HTTP_VERIFY cryptographic
verification algorithm to the signature, recalculated signature base, key material, and signature value. The
HTTP_VERIFY primitive and several concrete algorithms are defined in Section 3.3.

9. The results of the verification algorithm function are the final results of the cryptographic verification
function.

If any of the above steps fail or produce an error, the signature validation fails.

For example, verifying the signature with the label sig1 of the following message with the test-key-
rsa-pss key (see Appendix B.1.2) and the RSASSA-PSS algorithm described in Section 3.3.1:
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NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Content-Length: 18
Signature-Input: sig1=("@method" "@authority" "@path" \
  "content-digest" "content-length" "content-type")\
  ;created=1618884473;keyid="test-key-rsa-pss"
Signature: sig1=:HIbjHC5rS0BYaa9v4QfD4193TORw7u9edguPh0AW3dMq9WImrl\
  FrCGUDih47vAxi4L2YRZ3XMJc1uOKk/J0ZmZ+wcta4nKIgBkKq0rM9hs3CQyxXGxH\
  LMCy8uqK488o+9jrptQ+xFPHK7a9sRL1IXNaagCNN3ZxJsYapFj+JXbmaI5rtAdSf\
  SvzPuBCh+ARHBmWuNo1UzVVdHXrl8ePL4cccqlazIJdC4QEjrF+Sn4IxBQzTZsL9y\
  9TP5FsZYzHvDqbInkTNigBcE9cKOYNFCn4D/WM7F6TNuZO9EgtzepLWcjTymlHzK7\
  aXq6Am6sfOrpIC49yXjj3ae6HRalVc/g==:

{"hello": "world"}

With the additional requirements that at least the method, authority, path, content-digest, content-length,
and content-type entries be signed, and that the signature creation timestamp be recent enough at the time of
verification, the verification passes.

3.2.1.  Enforcing Application Requirements

The verification requirements specified in this document are intended as a baseline set of restrictions that are
generally applicable to all use cases. Applications using HTTP message signatures MAY impose requirements
above and beyond those specified by this document, as appropriate for their use case.

Some non-normative examples of additional requirements an application might define are:

• Requiring a specific set of header fields to be signed (e.g., Authorization, Content-Digest).

• Enforcing a maximum signature age from the time of the created timestamp.

• Rejecting signatures past the expiration time in the expires timestamp. Note that the expiration time is a
hint from the signer and that a verifier can always reject a signature ahead of its expiration time.

• Prohibiting certain signature metadata parameters, such as runtime algorithm signaling with the alg
parameter when the algorithm is determined from the key information.

• Ensuring successful dereferencing of the keyid parameter to valid and appropriate key material.

• Prohibiting the use of certain algorithms or mandating the use of a specific algorithm.

• Requiring keys to be of a certain size (e.g., 2048 bits vs. 1024 bits).

• Enforcing uniqueness of the nonce parameter.

• Requiring an application-specific value for the tag parameter.

Application-specific requirements are expected and encouraged. When an application defines additional
requirements, it MUST enforce them during the signature verification process, and signature verification
MUST fail if the signature does not conform to the application's requirements.

Applications MUST enforce the requirements defined in this document. Regardless of use case, applications
MUST NOT accept signatures that do not conform to these requirements.
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3.3.  Signature Algorithms

An HTTP message signature MUST use a cryptographic digital signature or MAC method that is appropriate
for the key material, environment, and needs of the signer and verifier. This specification does not strictly limit
the available signature algorithms, and any signature algorithm that meets these basic requirements MAY be
used by an application of HTTP message signatures.

For each signing method, HTTP_SIGN takes as its input the signature base defined in Section 2.5 as a byte
array (M) and the signing key material (Ks), and outputs the resultant signature as a byte array (S):

HTTP_SIGN (M, Ks)  ->  S

For each verification method, HTTP_VERIFY takes as its input the regenerated signature base defined in
Section 2.5 as a byte array (M), the verification key material (Kv), and the presented signature to be verified as a
byte array (S), and outputs the verification result (V) as a Boolean:

HTTP_VERIFY (M, Kv, S) -> V

The following sections contain several common signature algorithms and demonstrate how these cryptographic
primitives map to the HTTP_SIGN and HTTP_VERIFY definitions above. Which method to use can be
communicated through the explicit algorithm (alg) signature parameter (Section 2.3), by reference to the key
material, or through mutual agreement between the signer and verifier. Signature algorithms selected using the
alg parameter MUST use values from the "HTTP Signature Algorithms" registry (Section 6.2).

3.3.1.  RSASSA-PSS Using SHA-512

To sign using this algorithm, the signer applies the RSASSA-PSS-SIGN (K, M) function defined in
[RFC8017] with the signer's private signing key (K) and the signature base (M) (Section 2.5). The mask
generation function is MGF1 as specified in [RFC8017] with a hash function of SHA-512 [RFC6234]. The salt
length (sLen) is 64 bytes. The hash function (Hash) SHA-512 [RFC6234] is applied to the signature base to
create the digest content to which the digital signature is applied. The resulting signed content byte array (S) is
the HTTP message signature output used in Section 3.1.

To verify using this algorithm, the verifier applies the RSASSA-PSS-VERIFY ((n, e), M, S) function
[RFC8017] using the public key portion of the verification key material (n, e) and the signature base (M)
recreated as described in Section 3.2. The mask generation function is MGF1 as specified in [RFC8017] with a
hash function of SHA-512 [RFC6234]. The salt length (sLen) is 64 bytes. The hash function (Hash) SHA-512
[RFC6234] is applied to the signature base to create the digest content to which the verification function is
applied. The verifier extracts the HTTP message signature to be verified (S) as described in Section 3.2. The
results of the verification function indicate whether the signature presented is valid.

Note that the output of the RSASSA-PSS algorithm is non-deterministic; therefore, it is not correct to
recalculate a new signature on the signature base and compare the results to an existing signature. Instead, the
verification algorithm defined here needs to be used. See Section 7.3.5.

The use of this algorithm can be indicated at runtime using the rsa-pss-sha512 value for the alg
signature parameter.

3.3.2.  RSASSA-PKCS1-v1_5 Using SHA-256

To sign using this algorithm, the signer applies the RSASSA-PKCS1-V1_5-SIGN (K, M) function defined
in [RFC8017] with the signer's private signing key (K) and the signature base (M) (Section 2.5). The hash
SHA-256 [RFC6234] is applied to the signature base to create the digest content to which the digital signature
is applied. The resulting signed content byte array (S) is the HTTP message signature output used in Section
3.1.

To verify using this algorithm, the verifier applies the RSASSA-PKCS1-V1_5-VERIFY ((n, e), M,
S) function [RFC8017] using the public key portion of the verification key material (n, e) and the signature
base (M) recreated as described in Section 3.2. The hash function SHA-256 [RFC6234] is applied to the
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signature base to create the digest content to which the verification function is applied. The verifier extracts the
HTTP message signature to be verified (S) as described in Section 3.2. The results of the verification function
indicate whether the signature presented is valid.

The use of this algorithm can be indicated at runtime using the rsa-v1_5-sha256 value for the alg
signature parameter.

3.3.3.  HMAC Using SHA-256

To sign and verify using this algorithm, the signer applies the HMAC function [RFC2104] with the shared
signing key (K) and the signature base (text) (Section 2.5). The hash function SHA-256 [RFC6234] is applied
to the signature base to create the digest content to which the HMAC is applied, giving the signature result.

For signing, the resulting value is the HTTP message signature output used in Section 3.1.

For verification, the verifier extracts the HTTP message signature to be verified (S) as described in Section 3.2.
The output of the HMAC function is compared bytewise to the value of the HTTP message signature, and the
results of the comparison determine the validity of the signature presented.

The use of this algorithm can be indicated at runtime using the hmac-sha256 value for the alg signature
parameter.

3.3.4.  ECDSA Using Curve P-256 DSS and SHA-256

To sign using this algorithm, the signer applies the ECDSA signature algorithm defined in [FIPS186-5] using
curve P-256 with the signer's private signing key and the signature base (Section 2.5). The hash SHA-256
[RFC6234] is applied to the signature base to create the digest content to which the digital signature is applied
(M). The signature algorithm returns two integer values: r and s. These are both encoded as big-endian
unsigned integers, zero-padded to 32 octets each. These encoded values are concatenated into a single 64-octet
array consisting of the encoded value of r followed by the encoded value of s. The resulting concatenation of
(r, s) is a byte array of the HTTP message signature output used in Section 3.1.

To verify using this algorithm, the verifier applies the ECDSA signature algorithm defined in [FIPS186-5] using
the public key portion of the verification key material and the signature base recreated as described in Section
3.2. The hash function SHA-256 [RFC6234] is applied to the signature base to create the digest content to
which the signature verification function is applied (M). The verifier extracts the HTTP message signature to
be verified (S) as described in Section 3.2. This value is a 64-octet array consisting of the encoded values of r
and s concatenated in order. These are both encoded as big-endian unsigned integers, zero-padded to 32 octets
each. The resulting signature value (r, s) is used as input to the signature verification function. The results
of the verification function indicate whether the signature presented is valid.

Note that the output of ECDSA signature algorithms is non-deterministic; therefore, it is not correct to
recalculate a new signature on the signature base and compare the results to an existing signature. Instead, the
verification algorithm defined here needs to be used. See Section 7.3.5.

The use of this algorithm can be indicated at runtime using the ecdsa-p256-sha256 value for the alg
signature parameter.

3.3.5.  ECDSA Using Curve P-384 DSS and SHA-384

To sign using this algorithm, the signer applies the ECDSA signature algorithm defined in [FIPS186-5] using
curve P-384 with the signer's private signing key and the signature base (Section 2.5). The hash SHA-384
[RFC6234] is applied to the signature base to create the digest content to which the digital signature is applied
(M). The signature algorithm returns two integer values: r and s. These are both encoded as big-endian
unsigned integers, zero-padded to 48 octets each. These encoded values are concatenated into a single 96-octet
array consisting of the encoded value of r followed by the encoded value of s. The resulting concatenation of
(r, s) is a byte array of the HTTP message signature output used in Section 3.1.

To verify using this algorithm, the verifier applies the ECDSA signature algorithm defined in [FIPS186-5] using
the public key portion of the verification key material and the signature base recreated as described in Section
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3.2. The hash function SHA-384 [RFC6234] is applied to the signature base to create the digest content to
which the signature verification function is applied (M). The verifier extracts the HTTP message signature to
be verified (S) as described in Section 3.2. This value is a 96-octet array consisting of the encoded values of r
and s concatenated in order. These are both encoded as big-endian unsigned integers, zero-padded to 48 octets
each. The resulting signature value (r, s) is used as input to the signature verification function. The results
of the verification function indicate whether the signature presented is valid.

Note that the output of ECDSA signature algorithms is non-deterministic; therefore, it is not correct to
recalculate a new signature on the signature base and compare the results to an existing signature. Instead, the
verification algorithm defined here needs to be used. See Section 7.3.5.

The use of this algorithm can be indicated at runtime using the ecdsa-p384-sha384 value for the alg
signature parameter.

3.3.6.  EdDSA Using Curve edwards25519

To sign using this algorithm, the signer applies the Ed25519 algorithm defined in Section 5.1.6 of [RFC8032]
with the signer's private signing key and the signature base (Section 2.5). The signature base is taken as the
input message (M) with no prehash function. The signature is a 64-octet concatenation of R and S as specified
in Section 5.1.6 of [RFC8032], and this is taken as a byte array for the HTTP message signature output used in
Section 3.1.

To verify using this algorithm, the signer applies the Ed25519 algorithm defined in Section 5.1.7 of
[RFC8032] using the public key portion of the verification key material (A) and the signature base recreated as
described in Section 3.2. The signature base is taken as the input message (M) with no prehash function. The
signature to be verified is processed as the 64-octet concatenation of R and S as specified in Section 5.1.7 of
[RFC8032]. The results of the verification function indicate whether the signature presented is valid.

The use of this algorithm can be indicated at runtime using the ed25519 value for the alg signature
parameter.

3.3.7.  JSON Web Signature (JWS) Algorithms

If the signing algorithm is a JSON Object Signing and Encryption (JOSE) signing algorithm from the "JSON
Web Signature and Encryption Algorithms" registry established by [RFC7518], the JWS algorithm definition
determines the signature and hashing algorithms to apply for both signing and verification.

For both signing and verification, the HTTP message's signature base (Section 2.5) is used as the entire "JWS
Signing Input". The JOSE Header [JWS] [RFC7517] is not used, and the signature base is not first encoded
in Base64 before applying the algorithm. The output of the JWS Signature is taken as a byte array prior to the
Base64url encoding used in JOSE.

The JWS algorithm MUST NOT be "none" and MUST NOT be any algorithm with a JOSE Implementation
Requirement of "Prohibited".

JSON Web Algorithm (JWA) values from the "JSON Web Signature and Encryption Algorithms" registry are
not included as signature parameters. Typically, the JWS algorithm can be signaled using JSON Web Keys
(JWKs) or other mechanisms common to JOSE implementations. In fact, JWA values are not registered in the
"HTTP Signature Algorithms" registry (Section 6.2), and so the explicit alg signature parameter is not used at
all when using JOSE signing algorithms.
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4.  Including a Message Signature in a Message

HTTP message signatures can be included within an HTTP message via the Signature-Input and Signature
fields, both defined within this specification.

The Signature-Input field identifies the covered components and parameters that describe how the signature
was generated, while the Signature field contains the signature value. Each field MAY contain multiple labeled
values.

An HTTP message signature is identified by a label within an HTTP message. This label MUST be unique
within a given HTTP message and MUST be used in both the Signature-Input field and the Signature field. The
label is chosen by the signer, except where a specific label is dictated by protocol negotiations such as those
described in Section 5.

An HTTP message signature MUST use both the Signature-Input field and the Signature field, and each field
MUST contain the same labels. The presence of a label in one field but not the other is an error.

4.1.  The Signature-Input HTTP Field

The Signature-Input field is a Dictionary Structured Field (defined in Section 3.2 of [STRUCTURED-
FIELDS]) containing the metadata for one or more message signatures generated from components within
the HTTP message. Each member describes a single message signature. The member's key is the label that
uniquely identifies the message signature within the HTTP message. The member's value is the covered
components ordered set serialized as an Inner List, including all signature metadata parameters identified by the
label:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=("@method" "@target-uri" "@authority" \
  "content-digest" "cache-control");\
  created=1618884475;keyid="test-key-rsa-pss"

To facilitate signature validation, the Signature-Input field value MUST contain the same serialized value
used in generating the signature base's @signature-params value defined in Section 2.3. Note that in a
Structured Field value, list order and parameter order have to be preserved.

The signer MAY include the Signature-Input field as a trailer to facilitate signing a message after its content
has been processed by the signer. However, since intermediaries are allowed to drop trailers as per [HTTP], it
is RECOMMENDED that the Signature-Input field be included only as a header field to avoid signatures being
inadvertently stripped from a message.

Multiple Signature-Input fields MAY be included in a single HTTP message. The signature labels MUST be
unique across all field values.

4.2.  The Signature HTTP Field

The Signature field is a Dictionary Structured Field (defined in Section 3.2 of [STRUCTURED-FIELDS])
containing one or more message signatures generated from the signature context of the target message. The
member's key is the label that uniquely identifies the message signature within the HTTP message. The
member's value is a Byte Sequence containing the signature value for the message signature identified by the
label:
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NOTE: '\' line wrapping per RFC 8792

Signature: sig1=:P0wLUszWQjoi54udOtydf9IWTfNhy+r53jGFj9XZuP4uKwxyJo\
  1RSHi+oEF1FuX6O29d+lbxwwBao1BAgadijW+7O/PyezlTnqAOVPWx9GlyntiCiHz\
  C87qmSQjvu1CFyFuWSjdGa3qLYYlNm7pVaJFalQiKWnUaqfT4LyttaXyoyZW84jS8\
  gyarxAiWI97mPXU+OVM64+HVBHmnEsS+lTeIsEQo36T3NFf2CujWARPQg53r58Rmp\
  Z+J9eKR2CD6IJQvacn5A4Ix5BUAVGqlyp8JYm+S/CWJi31PNUjRRCusCVRj05NrxA\
  BNFv3r5S9IXf2fYJK+eyW4AiGVMvMcOg==:

The signer MAY include the Signature field as a trailer to facilitate signing a message after its content has
been processed by the signer. However, since intermediaries are allowed to drop trailers as per [HTTP], it
is RECOMMENDED that the Signature field be included only as a header field to avoid signatures being
inadvertently stripped from a message.

Multiple Signature fields MAY be included in a single HTTP message. The signature labels MUST be unique
across all field values.

4.3.  Multiple Signatures

Multiple distinct signatures MAY be included in a single message. Each distinct signature MUST have a
unique label. These multiple signatures could all be added by the same signer, or they could come from several
different signers. For example, a signer may include multiple signatures signing the same message components
with different keys or algorithms to support verifiers with different capabilities, or a reverse proxy may include
information about the client in fields when forwarding the request to a service host, including a signature over
the client's original signature values.

The following non-normative example starts with a signed request from the client. A reverse proxy takes this
request and validates the client's signature:

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Length: 18
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Signature-Input: sig1=("@method" "@authority" "@path" \
  "content-digest" "content-type" "content-length")\
  ;created=1618884475;keyid="test-key-ecc-p256"
Signature: sig1=:X5spyd6CFnAG5QnDyHfqoSNICd+BUP4LYMz2Q0JXlb//4Ijpzp\
  +kve2w4NIyqeAuM7jTDX+sNalzA8ESSaHD3A==:

{"hello": "world"}

The proxy then alters the message before forwarding it on to the origin server, changing the target host and
adding the Forwarded header field defined in [RFC7239]:

Backman, et al. Expires August 2024 [Page 37]



RFC 9421 HTTP Message Signatures February 2024

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: origin.host.internal.example
Date: Tue, 20 Apr 2021 02:07:56 GMT
Content-Type: application/json
Content-Length: 18
Forwarded: for=192.0.2.123;host=example.com;proto=https
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Signature-Input: sig1=("@method" "@authority" "@path" \
  "content-digest" "content-type" "content-length")\
  ;created=1618884475;keyid="test-key-ecc-p256"
Signature: sig1=:X5spyd6CFnAG5QnDyHfqoSNICd+BUP4LYMz2Q0JXlb//4Ijpzp\
  +kve2w4NIyqeAuM7jTDX+sNalzA8ESSaHD3A==:

{"hello": "world"}

The proxy is in a position to validate the incoming client's signature and make its own statement to the origin
server about the nature of the request that it is forwarding by adding its own signature over the new message
before passing it along to the origin server. The proxy also includes all the elements from the original message
that are relevant to the origin server's processing. In many cases, the proxy will want to cover all the same
components that were covered by the client's signature, which is the case in the following example. Note that
in this example, the proxy is signing over the new authority value, which it has changed. The proxy also adds
the Forwarded header field to its own signature value. The proxy identifies its own key and algorithm and, in
this example, includes an expiration for the signature to indicate to downstream systems that the proxy will not
vouch for this signed message past this short time window. This results in a signature base of:

NOTE: '\' line wrapping per RFC 8792

"@method": POST
"@authority": origin.host.internal.example
"@path": /foo
"content-digest": sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX\
  +TaPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
"content-type": application/json
"content-length": 18
"forwarded": for=192.0.2.123;host=example.com;proto=https
"@signature-params": ("@method" "@authority" "@path" \
  "content-digest" "content-type" "content-length" "forwarded")\
  ;created=1618884480;keyid="test-key-rsa";alg="rsa-v1_5-sha256"\
  ;expires=1618884540

and a signature output value of:

NOTE: '\' line wrapping per RFC 8792

S6ZzPXSdAMOPjN/6KXfXWNO/f7V6cHm7BXYUh3YD/fRad4BCaRZxP+JH+8XY1I6+8Cy\
+CM5g92iHgxtRPz+MjniOaYmdkDcnL9cCpXJleXsOckpURl49GwiyUpZ10KHgOEe11s\
x3G2gxI8S0jnxQB+Pu68U9vVcasqOWAEObtNKKZd8tSFu7LB5YAv0RAGhB8tmpv7sFn\
Im9y+7X5kXQfi8NMaZaA8i2ZHwpBdg7a6CMfwnnrtflzvZdXAsD3LH2TwevU+/PBPv0\
B6NMNk93wUs/vfJvye+YuI87HU38lZHowtznbLVdp770I6VHR6WfgS9ddzirrswsE1w\
5o0LV/g==

These values are added to the HTTP request message by the proxy. The original signature is included under the
label sig1, and the reverse proxy's signature is included under the label proxy_sig. The proxy uses the key
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test-key-rsa to create its signature using the rsa-v1_5-sha256 signature algorithm, while the client's
original signature was made using the key test-key-rsa-pss and an RSA-PSS signature algorithm:

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: origin.host.internal.example
Date: Tue, 20 Apr 2021 02:07:56 GMT
Content-Type: application/json
Content-Length: 18
Forwarded: for=192.0.2.123;host=example.com;proto=https
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Signature-Input: sig1=("@method" "@authority" "@path" \
    "content-digest" "content-type" "content-length")\
    ;created=1618884475;keyid="test-key-ecc-p256", \
  proxy_sig=("@method" "@authority" "@path" "content-digest" \
    "content-type" "content-length" "forwarded")\
    ;created=1618884480;keyid="test-key-rsa";alg="rsa-v1_5-sha256"\
    ;expires=1618884540
Signature: sig1=:X5spyd6CFnAG5QnDyHfqoSNICd+BUP4LYMz2Q0JXlb//4Ijpzp\
    +kve2w4NIyqeAuM7jTDX+sNalzA8ESSaHD3A==:, \
  proxy_sig=:S6ZzPXSdAMOPjN/6KXfXWNO/f7V6cHm7BXYUh3YD/fRad4BCaRZxP+\
    JH+8XY1I6+8Cy+CM5g92iHgxtRPz+MjniOaYmdkDcnL9cCpXJleXsOckpURl49G\
    wiyUpZ10KHgOEe11sx3G2gxI8S0jnxQB+Pu68U9vVcasqOWAEObtNKKZd8tSFu7\
    LB5YAv0RAGhB8tmpv7sFnIm9y+7X5kXQfi8NMaZaA8i2ZHwpBdg7a6CMfwnnrtf\
    lzvZdXAsD3LH2TwevU+/PBPv0B6NMNk93wUs/vfJvye+YuI87HU38lZHowtznbL\
    Vdp770I6VHR6WfgS9ddzirrswsE1w5o0LV/g==:

{"hello": "world"}

While the proxy could additionally include the client's Signature field value and Signature-Input fields from
the original message in the new signature's covered components, this practice is NOT RECOMMENDED
due to known weaknesses in signing signature values as discussed in Section 7.3.7. The proxy is in a position
to validate the client's signature; the changes the proxy makes to the message will invalidate the existing
signature when the message is seen by the origin server. In this example, it is possible for the origin server to
have additional information in its signature context to account for the change in authority, though this practice
requires additional configuration and extra care as discussed in Section 7.4.4. In other applications, the origin
server will not be able to verify the original signature itself but will still want to verify that the proxy has done
the appropriate validation of the client's signature. An application that needs to signal successful processing
or receipt of a signature would need to carefully specify alternative mechanisms for sending such a signal
securely.

Backman, et al. Expires August 2024 [Page 39]



RFC 9421 HTTP Message Signatures February 2024

5.  Requesting Signatures

While a signer is free to attach a signature to a request or response without prompting, it is often desirable for a
potential verifier to signal that it expects a signature from a potential signer using the Accept-Signature field.

When the Accept-Signature field is sent in an HTTP request message, the field indicates that the client desires
the server to sign the response using the identified parameters, and the target message is the response to this
request. All responses from resources that support such signature negotiation SHOULD either be uncacheable
or contain a Vary header field that lists Accept-Signature, in order to prevent a cache from returning a response
with a signature intended for a different request.

When the Accept-Signature field is used in an HTTP response message, the field indicates that the server
desires the client to sign its next request to the server with the identified parameters, and the target message is
the client's next request. The client can choose to also continue signing future requests to the same server in the
same way.

The target message of an Accept-Signature field MUST include all labeled signatures indicated in the Accept-
Signature field, each covering the same identified components of the Accept-Signature field.

The sender of an Accept-Signature field MUST include only identifiers that are appropriate for the type of the
target message. For example, if the target message is a request, the covered components cannot include the
@status component identifier.

5.1.  The Accept-Signature Field

The Accept-Signature field is a Dictionary Structured Field (defined in Section 3.2 of [STRUCTURED-
FIELDS]) containing the metadata for one or more requested message signatures to be generated from message
components of the target HTTP message. Each member describes a single message signature. The member's
key is the label that uniquely identifies the requested message signature within the context of the target HTTP
message.

The member's value is the serialization of the desired covered components of the target message, including any
allowed component metadata parameters, using the serialization process defined in Section 2.3:

NOTE: '\' line wrapping per RFC 8792

Accept-Signature: sig1=("@method" "@target-uri" "@authority" \
  "content-digest" "cache-control");\
  keyid="test-key-rsa-pss";created;tag="app-123"

The list of component identifiers indicates the exact set of component identifiers to be included in the requested
signature, including all applicable component parameters.

The signature request MAY include signature metadata parameters that indicate desired behavior for the signer.
The following behavior is defined by this specification:

created: The signer is requested to generate and include a creation time. This
parameter has no associated value when sent as a signature request.

expires: The signer is requested to generate and include an expiration time.
This parameter has no associated value when sent as a signature
request.

nonce: The signer is requested to include the value of this parameter as the
signature nonce in the target signature.

alg: The signer is requested to use the indicated signature algorithm
from the "HTTP Signature Algorithms" registry to create the target
signature.
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keyid: The signer is requested to use the indicated key material to create the
target signature.

tag: The signer is requested to include the value of this parameter as the
signature tag in the target signature.

5.2.  Processing an Accept-Signature

The receiver of an Accept-Signature field fulfills that header as follows:

1. Parse the field value as a Dictionary.

2. For each member of the Dictionary:

3. Optionally create any additional Signature-Input and Signature field values, with unique labels not found in
the Accept-Signature field.

4. Combine all labeled Signature-Input and Signature field values, and attach both fields to the target message.

By this process, a signature applied to a target message MUST have the same label, MUST include the same set
of covered components, MUST process all requested parameters, and MAY have additional parameters.

The receiver of an Accept-Signature field MAY ignore any signature request that does not fit application
parameters.

The target message MAY include additional signatures not specified by the Accept-Signature field. For
example, to cover additional message components, the signer can create a second signature that includes the
additional components as well as the signature output of the requested signature.
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6.  IANA Considerations

IANA has updated one registry and created four new registries, according to the following sections.

6.1.  HTTP Field Name Registration

IANA has updated the entries in the "Hypertext Transfer Protocol (HTTP) Field Name Registry" as follows:

Field Name Status Reference
Signature-Input permanent Section 4.1 of RFC 9421
Signature permanent Section 4.2 of RFC 9421
Accept-Signature permanent Section 5.1 of RFC 9421

Table 1: Updates to the Hypertext Transfer Protocol (HTTP) Field Name Registry

6.2.  HTTP Signature Algorithms Registry

This document defines HTTP signature algorithms, for which IANA has created and now maintains a new
registry titled "HTTP Signature Algorithms". Initial values for this registry are given in Section 6.2.2. Future
assignments and modifications to existing assignments are to be made through the Specification Required
registration policy [RFC8126].

The algorithms listed in this registry identify some possible cryptographic algorithms for applications to use
with this specification, but the entries neither represent an exhaustive list of possible algorithms nor indicate
fitness for purpose with any particular application of this specification. An application is free to implement
any algorithm that suits its needs, provided the signer and verifier can agree to the parameters of that algorithm
in a secure and deterministic fashion. When an application needs to signal the use of a particular algorithm
at runtime using the alg signature parameter, this registry provides a mapping between the value of that
parameter and a particular algorithm. However, the use of the alg parameter needs to be treated with caution
to avoid various forms of algorithm confusion and substitution attacks, as discussed in Section 7.

The Status value should reflect standardization status and the broad opinion of relevant interest groups such
as the IETF or security-related Standards Development Organizations (SDOs). When an algorithm is first
registered, the designated expert (DE) should set the Status field to "Active" if there is consensus for the
algorithm to be generally recommended as secure or "Provisional" if the algorithm has not reached that
consensus, e.g., for an experimental algorithm. A status of "Provisional" does not mean that the algorithm
is known to be insecure but instead indicates that the algorithm has not reached consensus regarding its
properties. If at a future time the algorithm as registered is found to have flaws, the registry entry can be
updated and the algorithm can be marked as "Deprecated" to indicate that the algorithm has been found to
have problems. This status does not preclude an application from using a particular algorithm; rather, it serves
to provide a warning regarding possible known issues with an algorithm that need to be considered by the
application. The DE can further ensure that the registration includes an explanation and reference for the Status
value; this is particularly important for deprecated algorithms.

The DE is expected to do the following:

• Ensure that the algorithms referenced by a registered algorithm identifier are fully defined with all
parameters (e.g., salt, hash, required key length) fixed by the defining text.

• Ensure that the algorithm definition fully specifies the HTTP_SIGN and HTTP_VERIFY primitive
functions, including how all defined inputs and outputs map to the underlying cryptographic algorithm.

• Reject any registrations that are aliases of existing registrations.

• Ensure that all registrations follow the template presented in Section 6.2.1; this includes ensuring that the
length of the name is not excessive while still being unique and recognizable.

This specification creates algorithm identifiers by including major parameters in the identifier String in order
to make the algorithm name unique and recognizable by developers. However, algorithm identifiers in this
registry are to be interpreted as whole String values and not as a combination of parts. That is to say, it is
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expected that implementors understand rsa-pss-sha512 as referring to one specific algorithm with
its hash, mask, and salt values set as defined in the defining text that establishes the identifier in question.
Implementors do not parse out the rsa, pss, and sha512 portions of the identifier to determine parameters
of the signing algorithm from the String, and the registration of one combination of parameters does not imply
the registration of other combinations.

6.2.1.  Registration Template

Algorithm Name: An identifier for the HTTP signature algorithm. The name MUST be an
ASCII string that conforms to the sf-string ABNF rule in Section 3.3.3 of
[STRUCTURED-FIELDS] and SHOULD NOT exceed 20 characters in length.
The identifier MUST be unique within the context of the registry.

Description: A brief description of the algorithm used to sign the signature base.

Status: The status of the algorithm. MUST start with one of the following values and
MAY contain additional explanatory text. The options are:

"Active": For algorithms without known problems. The
signature algorithm is fully specified, and its security
properties are understood.

"Provisional": For unproven algorithms. The signature algorithm
is fully specified, but its security properties are not
known or proven.

"Deprecated": For algorithms with known security issues. The
signature algorithm is no longer recommended for
general use and might be insecure or unsafe in some
known circumstances.

Reference: Reference to the document or documents that specify the algorithm, preferably
including a URI that can be used to retrieve a copy of the document(s). An
indication of the relevant sections may also be included but is not required.

6.2.2.  Initial Contents

The table below contains the initial contents of the "HTTP Signature Algorithms" registry.

Algorithm Name Description Status Reference
rsa-pss-sha512 RSASSA-PSS using

SHA-512
Active Section 3.3.1 of RFC

9421
rsa-v1_5-sha256 RSASSA-PKCS1-

v1_5 using SHA-256
Active Section 3.3.2 of RFC

9421
hmac-sha256 HMAC using

SHA-256
Active Section 3.3.3 of RFC

9421
ecdsa-p256-
sha256

ECDSA using curve
P-256 DSS and
SHA-256

Active Section 3.3.4 of RFC
9421

ecdsa-p384-
sha384

ECDSA using curve
P-384 DSS and
SHA-384

Active Section 3.3.5 of RFC
9421

ed25519 EdDSA using curve
edwards25519

Active Section 3.3.6 of RFC
9421

Table 2: Initial Contents of the HTTP Signature Algorithms Registry
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6.3.  HTTP Signature Metadata Parameters Registry

This document defines the signature parameters structure (Section 2.3), which may have parameters containing
metadata about a message signature. IANA has created and now maintains a new registry titled "HTTP
Signature Metadata Parameters" to record and maintain the set of parameters defined for use with member
values in the signature parameters structure. Initial values for this registry are given in Section 6.3.2. Future
assignments and modifications to existing assignments are to be made through the Expert Review registration
policy [RFC8126].

The DE is expected to do the following:

• Ensure that the name follows the template presented in Section 6.3.1; this includes ensuring that the length
of the name is not excessive while still being unique and recognizable for its defined function.

• Ensure that the defined functionality is clear and does not conflict with other registered parameters.

• Ensure that the definition of the metadata parameter includes its behavior when used as part of the normal
signature process as well as when used in an Accept-Signature field.

6.3.1.  Registration Template

Name: An identifier for the HTTP signature metadata parameter. The name MUST be
an ASCII string that conforms to the key ABNF rule defined in Section 3.1.2 of
[STRUCTURED-FIELDS] and SHOULD NOT exceed 20 characters in length. The
identifier MUST be unique within the context of the registry.

Description: A brief description of the metadata parameter and what it represents.

Reference: Reference to the document or documents that specify the parameter, preferably
including a URI that can be used to retrieve a copy of the document(s). An indication of
the relevant sections may also be included but is not required.

6.3.2.  Initial Contents

The table below contains the initial contents of the "HTTP Signature Metadata Parameters" registry. Each row
in the table represents a distinct entry in the registry.

Name Description Reference
alg Explicitly declared signature

algorithm
Section 2.3 of RFC 9421

created Timestamp of signature
creation

Section 2.3 of RFC 9421

expires Timestamp of proposed
signature expiration

Section 2.3 of RFC 9421

keyid Key identifier for the signing
and verification keys used to
create this signature

Section 2.3 of RFC 9421

nonce A single-use nonce value Section 2.3 of RFC 9421
tag An application-specific tag for

a signature
Section 2.3 of RFC 9421

Table 3: Initial Contents of the HTTP Signature Metadata Parameters Registry

6.4.  HTTP Signature Derived Component Names Registry

This document defines a method for canonicalizing HTTP message components, including components that
can be derived from the context of the target message outside of the HTTP fields. These derived components
are identified by a unique String, known as the component name. Component names for derived components
always start with the "at" (@) symbol to distinguish them from HTTP field names. IANA has created and now
maintains a new registry titled "HTTP Signature Derived Component Names" to record and maintain the set of
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non-field component names and the methods used to produce their associated component values. Initial values
for this registry are given in Section 6.4.2. Future assignments and modifications to existing assignments are to
be made through the Expert Review registration policy [RFC8126].

The DE is expected to do the following:

• Ensure that the name follows the template presented in Section 6.4.1; this includes ensuring that the length
of the name is not excessive while still being unique and recognizable for its defined function.

• Ensure that the component value represented by the registration request can be deterministically derived
from the target HTTP message.

• Ensure that any parameters defined for the registration request are clearly documented, along with their
effects on the component value.

The DE should ensure that a registration is sufficiently distinct from existing derived component definitions to
warrant its registration.

When setting a registered item's status to "Deprecated", the DE should ensure that a reason for the deprecation
is documented, along with instructions for moving away from the deprecated functionality.

6.4.1.  Registration Template

Name: A name for the HTTP derived component. The name MUST begin with the "at" (@)
character followed by an ASCII string consisting only of lowercase characters
("a"-"z"), digits ("0"-"9"), and hyphens ("-"), and SHOULD NOT exceed 20
characters in length. The name MUST be unique within the context of the registry.

Description: A description of the derived component.

Status: A brief text description of the status of the algorithm. The description MUST begin
with one of "Active" or "Deprecated" and MAY provide further context or explanation
as to the reason for the status. A value of "Deprecated" indicates that the derived
component name is no longer recommended for use.

Target: The valid message targets for the derived parameter. MUST be one of the values
"Request", "Response", or "Request, Response". The semantics of these entries are
defined in Section 2.2.

Reference: Reference to the document or documents that specify the derived component,
preferably including a URI that can be used to retrieve a copy of the document(s). An
indication of the relevant sections may also be included but is not required.

6.4.2.  Initial Contents

The table below contains the initial contents of the "HTTP Signature Derived Component Names" registry.

Name Description Status Target Reference
@signature-
params

Reserved
for signature
parameters line
in signature base

Active Request,
Response

Section 2.3 of
RFC 9421

@method The HTTP
request method

Active Request Section 2.2.1 of
RFC 9421

@authority The HTTP
authority, or
target host

Active Request Section 2.2.3 of
RFC 9421

@scheme The URI scheme
of the request
URI

Active Request Section 2.2.4 of
RFC 9421
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Name Description Status Target Reference
@target-uri The full target

URI of the
request

Active Request Section 2.2.2 of
RFC 9421

@request-
target

The request
target of the
request

Active Request Section 2.2.5 of
RFC 9421

@path The full path of
the request URI

Active Request Section 2.2.6 of
RFC 9421

@query The full query of
the request URI

Active Request Section 2.2.7 of
RFC 9421

@query-
param

A single named
query parameter

Active Request Section 2.2.8 of
RFC 9421

@status The status code
of the response

Active Response Section 2.2.9 of
RFC 9421

Table 4: Initial Contents of the HTTP Signature Derived Component Names Registry

6.5.  HTTP Signature Component Parameters Registry

This document defines several kinds of component identifiers, some of which can be parameterized in specific
circumstances to provide unique modified behavior. IANA has created and now maintains a new registry
titled "HTTP Signature Component Parameters" to record and maintain the set of parameter names, the
component identifiers they are associated with, and the modifications these parameters make to the component
value. Definitions of parameters MUST define the targets to which they apply (such as specific field types,
derived components, or contexts). Initial values for this registry are given in Section 6.5.2. Future assignments
and modifications to existing assignments are to be made through the Expert Review registration policy
[RFC8126].

The DE is expected to do the following:

• Ensure that the name follows the template presented in Section 6.5.1; this includes ensuring that the length
of the name is not excessive while still being unique and recognizable for its defined function.

• Ensure that the definition of the field sufficiently defines any interactions or incompatibilities with other
existing parameters known at the time of the registration request.

• Ensure that the component value defined by the component identifier with the parameter applied can
be deterministically derived from the target HTTP message in cases where the parameter changes the
component value.

6.5.1.  Registration Template

Name: A name for the parameter. The name MUST be an ASCII string that conforms to the
key ABNF rule defined in Section 3.1.2 of [STRUCTURED-FIELDS] and SHOULD
NOT exceed 20 characters in length. The name MUST be unique within the context of
the registry.

Description: A description of the parameter's function.

Reference: Reference to the document or documents that specify the derived component,
preferably including a URI that can be used to retrieve a copy of the document(s). An
indication of the relevant sections may also be included but is not required.

6.5.2.  Initial Contents

The table below contains the initial contents of the "HTTP Signature Component Parameters" registry.
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Name Description Reference
sf Strict Structured Field

serialization
Section 2.1.1 of RFC 9421

key Single key value of Dictionary
Structured Fields

Section 2.1.2 of RFC 9421

bs Byte Sequence wrapping
indicator

Section 2.1.3 of RFC 9421

tr Trailer Section 2.1.4 of RFC 9421
req Related request indicator Section 2.4 of RFC 9421
name Single named query parameter Section 2.2.8 of RFC 9421

Table 5: Initial Contents of the HTTP Signature Component Parameters Registry
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7.  Security Considerations

In order for an HTTP message to be considered covered by a signature, all of the following conditions have to
be true:

• A signature is expected or allowed on the message by the verifier.

• The signature exists on the message.

• The signature is verified against the identified key material and algorithm.

• The key material and algorithm are appropriate for the context of the message.

• The signature is within expected time boundaries.

• The signature covers the expected content, including any critical components.

• The list of covered components is applicable to the context of the message.

In addition to the application requirement definitions listed in Section 1.4, the following security considerations
provide discussion and context regarding the requirements of creating and verifying signatures on HTTP
messages.

7.1.  General Considerations

7.1.1.  Skipping Signature Verification

HTTP message signatures only provide security if the signature is verified by the verifier. Since the message
to which the signature is attached remains a valid HTTP message without the Signature or Signature-Input
fields, it is possible for a verifier to ignore the output of the verification function and still process the message.
Common reasons for this could be relaxed requirements in a development environment or a temporary
suspension of enforcing verification while debugging an overall system. Such temporary suspensions are
difficult to detect under positive-example testing, since a good signature will always trigger a valid response
whether or not it has been checked.

To detect this, verifiers should be tested using both valid and invalid signatures, ensuring that an invalid
signature fails as expected.

7.1.2.  Use of TLS

The use of HTTP message signatures does not negate the need for TLS or its equivalent to protect information
in transit. Message signatures provide message integrity over the covered message components but do not
provide any confidentiality for communication between parties.

TLS provides such confidentiality between the TLS endpoints. As part of this, TLS also protects the signature
data itself from being captured by an attacker. This is an important step in preventing signature replay (Section
7.2.2).

When TLS is used, it needs to be deployed according to the recommendations provided in [BCP195].

7.2.  Message Processing and Selection

7.2.1.  Insufficient Coverage

Any portions of the message not covered by the signature are susceptible to modification by an attacker without
affecting the signature. An attacker can take advantage of this by introducing or modifying a header field
or other message component that will change the processing of the message but will not be covered by the
signature. Such an altered message would still pass signature verification, but when the verifier processes the
message as a whole, the unsigned content injected by the attacker would subvert the trust conveyed by the valid
signature and change the outcome of processing the message.

To combat this, an application of this specification should require as much of the message as possible to be
signed, within the limits of the application and deployment. The verifier should only trust message components
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that have been signed. Verifiers could also strip out any sensitive unsigned portions of the message before
processing of the message continues.

7.2.2.  Signature Replay

Since HTTP message signatures allow sub-portions of the HTTP message to be signed, it is possible for two
different HTTP messages to validate against the same signature. The most extreme form of this would be a
signature over no message components. If such a signature were intercepted, it could be replayed at will by an
attacker, attached to any HTTP message. Even with sufficient component coverage, a given signature could
be applied to two similar HTTP messages, allowing a message to be replayed by an attacker with the signature
intact.

To counteract these kinds of attacks, it's first important for the signer to cover sufficient portions of the
message to differentiate it from other messages. In addition, the signature can use the nonce signature
parameter to provide a per-message unique value to allow the verifier to detect replay of the signature itself if
a nonce value is repeated. Furthermore, the signer can provide a timestamp for when the signature was created
and a time at which the signer considers the signature to be expired, limiting the utility of a captured signature
value.

If a verifier wants to trigger a new signature from a signer, it can send the Accept-Signature header field with
a new nonce parameter. An attacker that is simply replaying a signature would not be able to generate a new
signature with the chosen nonce value.

7.2.3.  Choosing Message Components

Applications of HTTP message signatures need to decide which message components will be covered by the
signature. Depending on the application, some components could be expected to be changed by intermediaries
prior to the signature's verification. If these components are covered, such changes would, by design, break the
signature.

However, this document allows for flexibility in determining which components are signed precisely so
that a given application can choose the appropriate portions of the message that need to be signed, avoiding
problematic components. For example, a web application framework that relies on rewriting query parameters
might avoid using the @query derived component in favor of sub-indexing the query value using @query-
param derived components instead.

Some components are expected to be changed by intermediaries and ought not to be signed under most
circumstances. The Via and Forwarded header fields, for example, are expected to be manipulated by proxies
and other middleboxes, including replacing or entirely dropping existing values. These fields should not be
covered by the signature, except in very limited and tightly coupled scenarios.

Additional considerations for choosing signature aspects are discussed in Section 1.4.

7.2.4.  Choosing Signature Parameters and Derived Components over HTTP Fields

Some HTTP fields have values and interpretations that are similar to HTTP signature parameters or derived
components. In most cases, it is more desirable to sign the non-field alternative. In particular, the following
fields should usually not be included in the signature unless the application specifically requires it:

"date" The Date header field value represents the timestamp of the HTTP message. However, the creation
time of the signature itself is encoded in the created signature parameter. These two values can
be different, depending on how the signature and the HTTP message are created and serialized.
Applications processing signatures for valid time windows should use the created signature
parameter for such calculations. An application could also put limits on how much skew there is
between the Date field and the created signature parameter, in order to limit the application of a
generated signature to different HTTP messages. See also Sections 7.2.2 and 7.2.1.

"host" The Host header field is specific to HTTP/1.1, and its functionality is subsumed by the
@authority derived component, defined in Section 2.2.3. In order to preserve the value across
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different HTTP versions, applications should always use the @authority derived component.
See also Section 7.5.4.

7.2.5.  Signature Labels

HTTP message signature values are identified in the Signature and Signature-Input field values by unique
labels. These labels are chosen only when attaching the signature values to the message and are not accounted
for during the signing process. An intermediary is allowed to relabel an existing signature when processing the
message.

Therefore, applications should not rely on specific labels being present, and applications should not put
semantic meaning on the labels themselves. Instead, additional signature parameters can be used to convey
whatever additional meaning is required to be attached to, and covered by, the signature. In particular, the tag
parameter can be used to define an application-specific value as described in Section 7.2.7.

7.2.6.  Multiple Signature Confusion

Since multiple signatures can be applied to one message (Section 4.3), it is possible for an attacker to attach
their own signature to a captured message without modifying existing signatures. This new signature could
be completely valid based on the attacker's key, or it could be an invalid signature for any number of reasons.
Each of these situations needs to be accounted for.

A verifier processing a set of valid signatures needs to account for all of the signers, identified by the signing
keys. Only signatures from expected signers should be accepted, regardless of the cryptographic validity of the
signature itself.

A verifier processing a set of signatures on a message also needs to determine what to do when one or more of
the signatures are not valid. If a message is accepted when at least one signature is valid, then a verifier could
drop all invalid signatures from the request before processing the message further. Alternatively, if the verifier
rejects a message for a single invalid signature, an attacker could use this to deny service to otherwise valid
messages by injecting invalid signatures alongside the valid signatures.

7.2.7.  Collision of Application-Specific Signature Tag

Multiple applications and protocols could apply HTTP signatures on the same message simultaneously. In
fact, this is a desired feature in many circumstances; see Section 4.3. A naive verifier could become confused
while processing multiple signatures, either accepting or rejecting a message based on an unrelated or irrelevant
signature. In order to help an application select which signatures apply to its own processing, the application
can declare a specific value for the tag signature parameter as defined in Section 2.3. For example, a signature
targeting an application gateway could require tag="app-gateway" as part of the signature parameters for
that application.

The use of the tag parameter does not prevent an attacker from also using the same value as a target
application, since the parameter's value is public and otherwise unrestricted. As a consequence, a verifier
should only use a value of the tag parameter to limit which signatures to check. Each signature still needs to
be examined by the verifier to ensure that sufficient coverage is provided, as discussed in Section 7.2.1.

7.2.8.  Message Content

On its own, this specification does not provide coverage for the content of an HTTP message under
the signature, in either a request or a response. However, [DIGEST] defines a set of fields that allow a
cryptographic digest of the content to be represented in a field. Once this field is created, it can be included just
like any other field as defined in Section 2.1.

For example, in the following response message:
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HTTP/1.1 200 OK
Content-Type: application/json

{"hello": "world"}

The digest of the content can be added to the Content-Digest field as follows:

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Content-Digest: \
  sha-256=:X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=:

{"hello": "world"}

This field can be included in a signature base just like any other field along with the basic signature parameters:

"@status": 200
"content-digest": \
  sha-256=:X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=:
"@signature-input": ("@status" "content-digest")

From here, the signing process proceeds as usual.

Upon verification, it is important that the verifier validate not only the signature but also the value of the
Content-Digest field itself against the actual received content. Unless the verifier performs this step, it would be
possible for an attacker to substitute the message content but leave the Content-Digest field value untouched to
pass the signature. Since only the field value is covered by the signature directly, checking only the signature is
not sufficient protection against such a substitution attack.

As discussed in [DIGEST], the value of the Content-Digest field is dependent on the content encoding of the
message. If an intermediary changes the content encoding, the resulting Content-Digest value would change.
This would in turn invalidate the signature. Any intermediary performing such an action would need to apply
a new signature with the updated Content-Digest field value, similar to the reverse proxy use case discussed in
Section 4.3.

Applications that make use of the req parameter (Section 2.4) also need to be aware of the limitations of this
functionality. Specifically, if a client does not include something like a Content-Digest header field in the
request, the server is unable to include a signature that covers the request's content.

7.3.  Cryptographic Considerations

7.3.1.  Cryptography and Signature Collision

This document does not define any of its own cryptographic primitives and instead relies on other
specifications to define such elements. If the signature algorithm or key used to process the signature base is
vulnerable to any attacks, the resulting signature will also be susceptible to these same attacks.

A common attack against signature systems is to force a signature collision, where the same signature value
successfully verifies against multiple different inputs. Since this specification relies on reconstruction of the
signature base from an HTTP message and the list of components signed is fixed in the signature, it is difficult
but not impossible for an attacker to effect such a collision. An attacker would need to manipulate the HTTP
message and its covered message components in order to make the collision effective.

To counter this, only vetted keys and signature algorithms should be used to sign HTTP messages. The "HTTP
Signature Algorithms" registry is one source of trusted signature algorithms for applications to apply to their
messages.

Backman, et al. Expires August 2024 [Page 51]



RFC 9421 HTTP Message Signatures February 2024

While it is possible for an attacker to substitute the signature parameters value or the signature value separately,
the signature base generation algorithm (Section 2.5) always covers the signature parameters as the final value
in the signature base using a deterministic serialization method. This step strongly binds the signature base with
the signature value in a way that makes it much more difficult for an attacker to perform a partial substitution
on the signature base.

7.3.2.  Key Theft

A foundational assumption of signature-based cryptographic systems is that the signing key is not
compromised by an attacker. If the keys used to sign the message are exfiltrated or stolen, the attacker will be
able to generate their own signatures using those keys. As a consequence, signers have to protect any signing
key material from exfiltration, capture, and use by an attacker.

To combat this, signers can rotate keys over time to limit the amount of time that stolen keys are useful. Signers
can also use key escrow and storage systems to limit the attack surface against keys. Furthermore, the use of
asymmetric signing algorithms exposes key material less than the use of symmetric signing algorithms (Section
7.3.3).

7.3.3.  Symmetric Cryptography

This document allows both asymmetric and symmetric cryptography to be applied to HTTP messages. By their
nature, symmetric cryptographic methods require the same key material to be known by both the signer and
verifier. This effectively means that a verifier is capable of generating a valid signature, since they have access
to the same key material. An attacker that is able to compromise a verifier would be able to then impersonate a
signer.

Where possible, asymmetric methods or secure key agreement mechanisms should be used in order to avoid
this type of attack. When symmetric methods are used, distribution of the key material needs to be protected
by the overall system. One technique for this is the use of separate cryptographic modules that separate the
verification process (and therefore the key material) from other code, minimizing the vulnerable attack surface.
Another technique is the use of key derivation functions that allow the signer and verifier to agree on unique
keys for each message without having to share the key values directly.

Additionally, if symmetric algorithms are allowed within a system, special care must be taken to avoid key
downgrade attacks (Section 7.3.6).

7.3.4.  Key Specification Mixup

The existence of a valid signature on an HTTP message is not sufficient to prove that the message has been
signed by the appropriate party. It is up to the verifier to ensure that a given key and algorithm are appropriate
for the message in question. If the verifier does not perform such a step, an attacker could substitute their
own signature using their own key on a message and force a verifier to accept and process it. To combat this,
the verifier needs to ensure not only that the signature can be validated for a message but that the key and
algorithm used are appropriate.

7.3.5.  Non-deterministic Signature Primitives

Some cryptographic primitives, such as RSA-PSS and ECDSA, have non-deterministic outputs, which include
some amount of entropy within the algorithm. For such algorithms, multiple signatures generated in succession
will not match. A lazy implementation of a verifier could ignore this distinction and simply check for the same
value being created by re-signing the signature base. Such an implementation would work for deterministic
algorithms such as HMAC and EdDSA but fail to verify valid signatures made using non-deterministic
algorithms. It is therefore important that a verifier always use the correctly defined verification function for the
algorithm in question and not do a simple comparison.
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7.3.6.  Key and Algorithm Specification Downgrades

Applications of this specification need to protect against key specification downgrade attacks. For example, the
same RSA key can be used for both RSA-PSS and RSA v1.5 signatures. If an application expects a key to only
be used with RSA-PSS, it needs to reject signatures for any key that uses the weaker RSA 1.5 specification.

Another example of a downgrade attack would be when an asymmetric algorithm is expected, such as RSA-
PSS, but an attacker substitutes a signature using a symmetric algorithm, such as HMAC. A naive verifier
implementation could use the value of the public RSA key as the input to the HMAC verification function.
Since the public key is known to the attacker, this would allow the attacker to create a valid HMAC signature
against this known key. To prevent this, the verifier needs to ensure that both the key material and the
algorithm are appropriate for the usage in question. Additionally, while this specification does allow runtime
specification of the algorithm using the alg signature parameter, applications are encouraged to use other
mechanisms such as static configuration or a higher-protocol-level algorithm specification instead, preventing
an attacker from substituting the algorithm specified.

7.3.7.  Signing Signature Values

When applying the req parameter (Section 2.4) or multiple signatures (Section 4.3) to a message, it is possible
to sign the value of an existing Signature field, thereby covering the bytes of the existing signature output in the
new signature's value. While it would seem that this practice would transitively cover the components under the
original signature in a verifiable fashion, the attacks described in [JACKSON2019] can be used to impersonate
a signature output value on an unrelated message.

In this example, Alice intends to send a signed request to Bob, and Bob wants to provide a signed response to
Alice that includes a cryptographic proof that Bob is responding to Alice's incoming message. Mallory wants to
intercept this traffic and replace Alice's message with her own, without Alice being aware that the interception
has taken place.

1. Alice creates a message Req_A and applies a signature Sig_A using her private key Key_A_Sign.

2. Alice believes she is sending Req_A to Bob.

3. Mallory intercepts Req_A and reads the value Sig_A from this message.

4. Mallory generates a different message Req_M to send to Bob instead.

5. Mallory crafts a signing key Key_M_Sign such that she can create a valid signature Sig_M over her
request Req_M using this key, but the byte value of Sig_M exactly equals that of Sig_A.

6. Mallory sends Req_M with Sig_M to Bob.

7. Bob validates Sig_M against Mallory's verification key Key_M_Verify. At no time does Bob think that
he's responding to Alice.

8. Bob responds with response message Res_B to Req_M and creates signature Sig_B over this message
using his key Key_B_Sign. Bob includes the value of Sig_M under Sig_B's covered components but
does not include anything else from the request message.

9. Mallory receives the response Res_B from Bob, including the signature Sig_B value. Mallory replays this
response to Alice.

10. Alice reads Res_B from Mallory and verifies Sig_B using Bob's verification key Key_B_Verify. Alice
includes the bytes of her original signature Sig_A in the signature base, and the signature verifies.

11. Alice is led to believe that Bob has responded to her message and believes she has cryptographic proof of
this happening, but in fact Bob responded to Mallory's malicious request and Alice is none the wiser.

To mitigate this, Bob can sign more portions of the request message than just the Signature field, in order to
more fully differentiate Alice's message from Mallory's. Applications using this feature, particularly for non-
repudiation purposes, can stipulate that any components required in the original signature also be covered
separately in the second signature. For signed messages, requiring coverage of the corresponding Signature-
Input field of the first signature ensures that unique items such as nonces and timestamps are also covered
sufficiently by the second signature.
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7.4.  Matching Signature Parameters to the Target Message

7.4.1.  Modification of Required Message Parameters

An attacker could effectively deny a service by modifying an otherwise benign signature parameter or signed
message component. While rejecting a modified message is the desired behavior, consistently failing signatures
could lead to (1) the verifier turning off signature checking in order to make systems work again (see Section
7.1.1) or (2) the application minimizing the requirements related to the signed component.

If such failures are common within an application, the signer and verifier should compare their generated
signature bases with each other to determine which part of the message is being modified. If an expected
modification is found, the signer and verifier can agree on an alternative set of requirements that will pass.
However, the signer and verifier should not remove the requirement to sign the modified component when it is
suspected that an attacker is modifying the component.

7.4.2.  Matching Values of Covered Components to Values in the Target Message

The verifier needs to make sure that the signed message components match those in the message itself. For
example, the @method derived component requires that the value within the signature base be the same as
the HTTP method used when presenting this message. This specification encourages this by requiring the
verifier to derive the signature base from the message, but lazy caching or conveyance of a raw signature base
to a processing subsystem could lead to downstream verifiers accepting a message that does not match the
presented signature.

To counter this, the component that generates the signature base needs to be trusted by both the signer and
verifier within a system.

7.4.3.  Message Component Source and Context

The signature context for deriving message component values includes the target HTTP message itself, any
associated messages (such as the request that triggered a response), and additional information that the signer or
verifier has access to. Both signers and verifiers need to carefully consider the source of all information when
creating component values for the signature base and take care not to take information from untrusted sources.
Otherwise, an attacker could leverage such a loosely defined message context to inject their own values into the
signature base string, overriding or corrupting the intended values.

For example, in most situations, the target URI of the message is as defined in [HTTP], Section 7.1. However,
let's say that there is an application that requires signing of the @authority of the incoming request, but the
application doing the processing is behind a reverse proxy. Such an application would expect a change in the
@authority value, and it could be configured to know the external target URI as seen by the client on the
other side of the proxy. This application would use this configured value as its target URI for the purposes of
deriving message component values such as @authority instead of using the target URI of the incoming
message.

This approach is not without problems, as a misconfigured system could accept signed requests intended for
different components in the system. For this scenario, an intermediary could instead add its own signature to be
verified by the application directly, as demonstrated in Section 4.3. This alternative approach requires a more
active intermediary but relies less on the target application knowing external configuration values.

As another example, Section 2.4 defines a method for signing response messages and also including portions
of the request message that triggered the response. In this case, the context for component value calculation
is the combination of the response and request messages, not just the single message to which the signature
is applied. For this feature, the req flag allows both signers to explicitly signal which part of the context
is being sourced for a component identifier's value. Implementations need to ensure that only the intended
message is being referred to for each component; otherwise, an attacker could attempt to subvert a signature by
manipulating one side or the other.
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7.4.4.  Multiple Message Component Contexts

It is possible that the context for deriving message component values could be distinct for each signature
present within a single message. This is particularly the case when proxies mutate messages and include
signatures over the mutated values, in addition to any existing signatures. For example, a reverse proxy can
replace a public hostname in a request to a service with the hostname for the individual service host to which it
is forwarding the request. If both the client and the reverse proxy add signatures covering @authority, the
service host will see two signatures on the request, each signing different values for the @authority message
component, reflecting the change to that component as the message made its way from the client to the service
host.

In such a case, it's common for the internal service to verify only one of the signatures or to use externally
configured information, as discussed in Section 7.4.3. However, a verifier processing both signatures has to use
a different message component context for each signature, since the component value for the @authority
component will be different for each signature. Verifiers like this need to be aware of both the reverse proxy's
context for incoming messages and the target service's context for the message coming from the reverse proxy.
The verifier needs to take particular care to apply the correct context to the correct signature; otherwise, an
attacker could use knowledge of this complex setup to confuse the inputs to the verifier.

Such verifiers also need to ensure that any differences in message component contexts between signatures
are expected and permitted. For example, in the above scenario, the reverse proxy could include the original
hostname in a Forwarded header field and could sign @authority, forwarded, and the client's entry in
the Signature field. The verifier can use the hostname from the Forwarded header field to confirm that the
hostname was transformed as expected.

7.5.  HTTP Processing

7.5.1.  Processing Invalid HTTP Field Names as Derived Component Names

The definition of HTTP field names does not allow for the use of the @ character anywhere in the name. As
such, since all derived component names start with the @ character, these namespaces should be completely
separate. However, some HTTP implementations are not sufficiently strict about the characters accepted in
HTTP field names. In such implementations, a sender (or attacker) could inject a header field starting with an
@ character and have it passed through to the application code. These invalid header fields could be used to
override a portion of the derived message content and substitute an arbitrary value, providing a potential place
for an attacker to mount a signature collision (Section 7.3.1) attack or other functional substitution attack (such
as using the signature from a GET request on a crafted POST request).

To combat this, when selecting values for a message component, if the component name starts with the @
character, it needs to be processed as a derived component and never processed as an HTTP field. Only if
the component name does not start with the @ character can it be taken from the fields of the message. The
algorithm discussed in Section 2.5 provides a safe order of operations.

7.5.2.  Semantically Equivalent Field Values

The signature base generation algorithm (Section 2.5) uses the value of an HTTP field as its component value.
In the common case, this amounts to taking the actual bytes of the field value as the component value for both
the signer and verifier. However, some field values allow for transformation of the values in semantically
equivalent ways that alter the bytes used in the value itself. For example, a field definition can declare some or
all of its values to be case insensitive or to have special handling of internal whitespace characters. Other fields
have expected transformations from intermediaries, such as the removal of comments in the Via header field.
In such cases, a verifier could be tripped up by using the equivalent transformed field value, which would differ
from the byte value used by the signer. The verifier would have a difficult time finding this class of errors,
since the value of the field is still acceptable for the application but the actual bytes required by the signature
base would not match.
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When processing such fields, the signer and verifier have to agree on how to handle such transformations, if
at all. One option is to not sign problematic fields, but care must be taken to ensure that there is still sufficient
signature coverage (Section 7.2.1) for the application. Another option is to define an application-specific
canonicalization value for the field before it is added to the HTTP message, such as to always remove internal
comments before signing or to always transform values to lowercase. Since these transformations are applied
prior to the field being used as input to the signature base generation algorithm, the signature base will still
simply contain the byte value of the field as it appears within the message. If the transformations were to be
applied after the value is extracted from the message but before it is added to the signature base, different attack
surfaces such as value substitution attacks could be launched against the application. All application-specific
additional rules are outside the scope of this specification, and by their very nature these transformations
would harm interoperability of the implementation outside of this specific application. It is recommended that
applications avoid the use of such additional rules wherever possible.

7.5.3.  Parsing Structured Field Values

Several parts of this specification rely on the parsing of Structured Field values [STRUCTURED-FIELDS]
-- in particular, strict serialization of HTTP Structured Field values (Section 2.1.1), referencing members
of a Dictionary Structured Field (Section 2.1.2), and processing the @signature-input value when
verifying a signature (Section 3.2). While Structured Field values are designed to be relatively simple to parse,
a naive or broken implementation of such a parser could lead to subtle attack surfaces being exposed in the
implementation.

For example, if a buggy parser of the @signature-input value does not enforce proper closing of quotes
around string values within the list of component identifiers, an attacker could take advantage of this and inject
additional content into the signature base through manipulating the Signature-Input field value on a message.

To counteract this, implementations should use fully compliant and trusted parsers for all Structured Field
processing, on both the signer side and the verifier side.

7.5.4.  HTTP Versions and Component Ambiguity

Some message components are expressed in different ways across HTTP versions. For example, the authority
of the request target is sent using the Host header field in HTTP/1.1 but with the :authority pseudo-header
in HTTP/2. If a signer sends an HTTP/1.1 message and signs the Host header field but the message is translated
to HTTP/2 before it reaches the verifier, the signature will not validate, as the Host header field could be
dropped.

It is for this reason that HTTP message signatures define a set of derived components that define a single way
to get the value in question, such as the @authority derived component (Section 2.2.3) in lieu of the Host
header field. Applications should therefore prefer derived components for such options where possible.

7.5.5.  Canonicalization Attacks

Any ambiguity in the generation of the signature base could provide an attacker with leverage to substitute
or break a signature on a message. Some message component values, particularly HTTP field values, are
potentially susceptible to broken implementations that could lead to unexpected and insecure behavior. Naive
implementations of this specification might implement HTTP field processing by taking the single value of a
field and using it as the direct component value without processing it appropriately.

For example, if the handling of obs-fold field values does not remove the internal line folding and
whitespace, additional newlines could be introduced into the signature base by the signer, providing a potential
place for an attacker to mount a signature collision (Section 7.3.1) attack. Alternatively, if header fields that
appear multiple times are not joined into a single string value, as required by this specification, similar attacks
can be mounted, as a signed component value would show up in the signature base more than once and could
be substituted or otherwise attacked in this way.

To counter this, the entire field value processing algorithm needs to be implemented by all implementations of
signers and verifiers.
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7.5.6.  Non-List Field Values

When an HTTP field occurs multiple times in a single message, these values need to be combined into a single
one-line string value to be included in the HTTP signature base, as described in Section 2.5. Not all HTTP
fields can be combined into a single value in this way and still be a valid value for the field. For the purposes of
generating the signature base, the message component value is never meant to be read back out of the signature
base string or used in the application. Therefore, it is considered best practice to treat the signature base
generation algorithm separately from processing the field values by the application, particularly for fields that
are known to have this property. If the field values that are being signed do not validate, the signed message
should also be rejected.

If an HTTP field allows for unquoted commas within its values, combining multiple field values can lead to a
situation where two semantically different messages produce the same line in a signature base. For example,
take the following hypothetical header field with an internal comma in its syntax, here used to define two
separate lists of values:

Example-Header: value, with, lots
Example-Header: of, commas

For this header field, sending all of these values as a single field value results in a single list of values:

Example-Header: value, with, lots, of, commas

Both of these messages would create the following line in the signature base:

"example-header": value, with, lots, of, commas

Since two semantically distinct inputs can create the same output in the signature base, special care has to be
taken when handling such values.

Specifically, the Set-Cookie field [COOKIE] defines an internal syntax that does not conform to the List syntax
provided in [STRUCTURED-FIELDS]. In particular, some portions allow unquoted commas, and the field
is typically sent as multiple separate field lines with distinct values when sending multiple cookies. When
multiple Set-Cookie fields are sent in the same message, it is not generally possible to combine these into a
single line and be able to parse and use the results, as discussed in [HTTP], Section 5.3. Therefore, all the
cookies need to be processed from their separate field values, without being combined, while the signature base
needs to be processed from the special combined value generated solely for this purpose. If the cookie value
is invalid, the signed message ought to be rejected, as this is a possible padding attack as described in Section
7.5.7.

To deal with this, an application can choose to limit signing of problematic fields like Set-Cookie, such
as including the field in a signature only when a single field value is present and the results would be
unambiguous. Similar caution needs to be taken with all fields that could have non-deterministic mappings into
the signature base. Signers can also make use of the bs parameter to armor such fields, as described in Section
2.1.3.

7.5.7.  Padding Attacks with Multiple Field Values

Since HTTP field values need to be combined into a single string value to be included in the HTTP signature
base (see Section 2.5), it is possible for an attacker to inject an additional value for a given field and add this to
the signature base of the verifier.

In most circumstances, this causes the signature validation to fail as expected, since the new signature base
value will not match the one used by the signer to create the signature. However, it is theoretically possible
for the attacker to inject both a garbage value into a field and a desired value into another field in order to
force a particular input. This is a variation of the collision attack described in Section 7.3.1, where the attacker
accomplishes their change in the message by adding to existing field values.
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To counter this, an application needs to validate the content of the fields covered in the signature in addition
to ensuring that the signature itself validates. With such protections, the attacker's padding attack would be
rejected by the field value processor, even in the case where the attacker could force a signature collision.

7.5.8.  Ambiguous Handling of Query Elements

The HTML form parameters format defined in Section 5 of [HTMLURL] is widely deployed and supported
by many application frameworks. For convenience, some of these frameworks in particular combine query
parameters that are found in the HTTP query and those found in the message content, particularly for POST
messages with a Content-Type value of "application/x-www-form-urlencoded". The @query-param derived
component identifier defined in Section 2.2.8 draws its values only from the query section of the target URI of
the request. As such, it would be possible for an attacker to shadow or replace query parameters in a request by
overriding a signed query parameter with an unsigned form parameter, or vice versa.

To counter this, an application needs to make sure that values used for the signature base and the application
are drawn from a consistent context, in this case the query component of the target URI. Additionally, when
the HTTP request has content, an application should sign the message content as well, as discussed in Section
7.2.8.
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8.  Privacy Considerations

8.1.  Identification through Keys

If a signer uses the same key with multiple verifiers or uses the same key over time with a single verifier, the
ongoing use of that key can be used to track the signer throughout the set of verifiers that messages are sent
to. Since cryptographic keys are meant to be functionally unique, the use of the same key over time is a strong
indicator that it is the same party signing multiple messages.

In many applications, this is a desirable trait, and it allows HTTP message signatures to be used as part of
authenticating the signer to the verifier. However, it could also result in unintentional tracking that a signer
might not be aware of. To counter this kind of tracking, a signer can use a different key for each verifier that it
is in communication with. Sometimes, a signer could also rotate their key when sending messages to a given
verifier. These approaches do not negate the need for other anti-tracking techniques to be applied as necessary.

8.2.  Signatures do not provide confidentiality

HTTP message signatures do not provide confidentiality for any of the information protected by the signature.
The content of the HTTP message, including the value of all fields and the value of the signature itself, is
presented in plaintext to any party with access to the message.

To provide confidentiality at the transport level, TLS or its equivalent can be used, as discussed in Section
7.1.2.

8.3.  Oracles

It is important to balance the need for providing useful feedback to developers regarding error conditions
without providing additional information to an attacker. For example, a naive but helpful server implementation
might try to indicate the required key identifier needed for requesting a resource. If someone knows who
controls that key, a correlation can be made between the resource's existence and the party identified by the
key. Access to such information could be used by an attacker as a means to target the legitimate owner of the
resource for further attacks.

8.4.  Required Content

A core design tenet of this specification is that all message components covered by the signature need to be
available to the verifier in order to recreate the signature base and verify the signature. As a consequence, if
an application of this specification requires that a particular field be signed, the verifier will need access to the
value of that field.

For example, in some complex systems with intermediary processors, this could cause surprising behavior
where, for fear of breaking the signature, an intermediary cannot remove privacy-sensitive information from
a message before forwarding it on for processing. One way to mitigate this specific situation would be for
the intermediary to verify the signature itself and then modify the message to remove the privacy-sensitive
information. The intermediary can add its own signature at this point to signal to the next destination that the
incoming signature was validated, as shown in the example in Section 4.3.
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Appendix A.  Detecting HTTP Message Signatures

There have been many attempts to create signed HTTP messages in the past, including other non-standardized
definitions of the Signature field that is used within this specification. It is recommended that developers
wishing to support this specification, other published documents, or other historical drafts do so carefully and
deliberately, as incompatibilities between this specification and other documents or various versions of other
drafts could lead to unexpected problems.

It is recommended that implementors first detect and validate the Signature-Input field defined in this
specification to detect that the mechanism described in this document is in use and not an alternative. If
the Signature-Input field is present, all Signature fields can be parsed and interpreted in the context of this
specification.
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Appendix B.  Examples

The following non-normative examples are provided as a means of testing implementations of HTTP message
signatures. The signed messages given can be used to create the signature base with the stated parameters,
creating signatures using the stated algorithms and keys.

The private keys given can be used to generate signatures, though since several of the demonstrated algorithms
are non-deterministic, the results of a signature are expected to be different from the exact bytes of the
examples. The public keys given can be used to validate all signed examples.

B.1.  Example Keys

This section provides cryptographic keys that are referenced in example signatures throughout this document.
These keys MUST NOT be used for any purpose other than testing.

The key identifiers for each key are used throughout the examples in this specification. It is assumed for these
examples that the signer and verifier can unambiguously dereference all key identifiers used here and that the
keys and algorithms used are appropriate for the context in which the signature is presented.

The components for each private key, in PEM format [RFC7468], can be displayed by executing the following
OpenSSL command:

openssl pkey -text

This command was tested with all the example keys on OpenSSL version 1.1.1m. Note that some systems
cannot produce or use all of these keys directly and may require additional processing. All keys are also made
available in JWK format.

B.1.1.  Example RSA Key

The following key is a 2048-bit RSA public and private key pair, referred to in this document as test-key-
rsa. This key is encoded in PEM format, with no encryption.
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-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsPBRrw
WEBnez6d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsdJKFq
MGmXCQvEG7YemcxDTRPxAleIAgYYRjTSd/QBwVW9OwNFhekro3RtlinV0a75jfZg
kne/YiktSvLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKIlE0P
uKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv5OoZJEIB+VmuKn3DCUcCZSFlQ
PSXSfBDiUGhwOw76WuSSsf1D4b/vLoJ10wIDAQAB
-----END RSA PUBLIC KEY-----

-----BEGIN RSA PRIVATE KEY-----
MIIEqAIBAAKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsP
BRrwWEBnez6d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsd
JKFqMGmXCQvEG7YemcxDTRPxAleIAgYYRjTSd/QBwVW9OwNFhekro3RtlinV0a75
jfZgkne/YiktSvLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKI
lE0PuKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv5OoZJEIB+VmuKn3DCUcCZ
SFlQPSXSfBDiUGhwOw76WuSSsf1D4b/vLoJ10wIDAQABAoIBAG/JZuSWdoVHbi56
vjgCgkjg3lkO1KrO3nrdm6nrgA9P9qaPjxuKoWaKO1cBQlE1pSWp/cKncYgD5WxE
CpAnRUXG2pG4zdkzCYzAh1i+c34L6oZoHsirK6oNcEnHveydfzJL5934egm6p8DW
+m1RQ70yUt4uRc0YSor+q1LGJvGQHReF0WmJBZHrhz5e63Pq7lE0gIwuBqL8SMaA
yRXtK+JGxZpImTq+NHvEWWCu09SCq0r838ceQI55SvzmTkwqtC+8AT2zFviMZkKR
Qo6SPsrqItxZWRty2izawTF0Bf5S2VAx7O+6t3wBsQ1sLptoSgX3QblELY5asI0J
YFz7LJECgYkAsqeUJmqXE3LP8tYoIjMIAKiTm9o6psPlc8CrLI9CH0UbuaA2JCOM
cCNq8SyYbTqgnWlB9ZfcAm/cFpA8tYci9m5vYK8HNxQr+8FS3Qo8N9RJ8d0U5Csw
DzMYfRghAfUGwmlWj5hp1pQzAuhwbOXFtxKHVsMPhz1IBtF9Y8jvgqgYHLbmyiu1
mwJ5AL0pYF0G7x81prlARURwHo0Yf52kEw1dxpx+JXER7hQRWQki5/NsUEtv+8RT
qn2m6qte5DXLyn83b1qRscSdnCCwKtKWUug5q2ZbwVOCJCtmRwmnP131lWRYfj67
B/xJ1ZA6X3GEf4sNReNAtaucPEelgR2nsN0gKQKBiGoqHWbK1qYvBxX2X3kbPDkv
9C+celgZd2PW7aGYLCHq7nPbmfDV0yHcWjOhXZ8jRMjmANVR/eLQ2EfsRLdW69bn
f3ZD7JS1fwGnO3exGmHO3HZG+6AvberKYVYNHahNFEw5TsAcQWDLRpkGybBcxqZo
81YCqlqidwfeO5YtlO7etx1xLyqa2NsCeG9A86UjG+aeNnXEIDk1PDK+EuiThIUa
/2IxKzJKWl1BKr2d4xAfR0ZnEYuRrbeDQYgTImOlfW6/GuYIxKYgEKCFHFqJATAG
IxHrq1PDOiSwXd2GmVVYyEmhZnbcp8CxaEMQoevxAta0ssMK3w6UsDtvUvYvF22m
qQKBiD5GwESzsFPy3Ga0MvZpn3D6EJQLgsnrtUPZx+z2Ep2x0xc5orneB5fGyF1P
WtP+fG5Q6Dpdz3LRfm+KwBCWFKQjg7uTxcjerhBWEYPmEMKYwTJF5PBG9/ddvHLQ
EQeNC8fHGg4UXU8mhHnSBt3EA10qQJfRDs15M38eG2cYwB1PZpDHScDnDA0=
-----END RSA PRIVATE KEY-----

The same public and private key pair in JWK format:
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NOTE: '\' line wrapping per RFC 8792

{
  "kty": "RSA",
  "kid": "test-key-rsa",
  "p": "sqeUJmqXE3LP8tYoIjMIAKiTm9o6psPlc8CrLI9CH0UbuaA2JCOMcCNq8Sy\
  YbTqgnWlB9ZfcAm_cFpA8tYci9m5vYK8HNxQr-8FS3Qo8N9RJ8d0U5CswDzMYfRgh\
  AfUGwmlWj5hp1pQzAuhwbOXFtxKHVsMPhz1IBtF9Y8jvgqgYHLbmyiu1mw",
  "q": "vSlgXQbvHzWmuUBFRHAejRh_naQTDV3GnH4lcRHuFBFZCSLn82xQS2_7xFO\
  qfabqq17kNcvKfzdvWpGxxJ2cILAq0pZS6DmrZlvBU4IkK2ZHCac_XfWVZFh-PrsH\
  _EnVkDpfcYR_iw1F40C1q5w8R6WBHaew3SAp",
  "d": "b8lm5JZ2hUduLnq-OAKCSODeWQ7Uqs7eet2bqeuAD0_2po-PG4qhZoo7VwF\
  CUTWlJan9wqdxiAPlbEQKkCdFRcbakbjN2TMJjMCHWL5zfgvqhmgeyKsrqg1wSce9\
  7J1_Mkvn3fh6CbqnwNb6bVFDvTJS3i5FzRhKiv6rUsYm8ZAdF4XRaYkFkeuHPl7rc\
  -ruUTSAjC4GovxIxoDJFe0r4kbFmkiZOr40e8RZYK7T1IKrSvzfxx5AjnlK_OZOTC\
  q0L7wBPbMW-IxmQpFCjpI-yuoi3FlZG3LaLNrBMXQF_lLZUDHs77q3fAGxDWwum2h\
  KBfdBuUQtjlqwjQlgXPsskQ",
  "e": "AQAB",
  "qi": "PkbARLOwU_LcZrQy9mmfcPoQlAuCyeu1Q9nH7PYSnbHTFzmiud4Hl8bIXU\
  9a0_58blDoOl3PctF-b4rAEJYUpCODu5PFyN6uEFYRg-YQwpjBMkXk8Eb39128ctA\
  RB40Lx8caDhRdTyaEedIG3cQDXSpAl9EOzXkzfx4bZxjAHU9mkMdJwOcMDQ",
  "dp": "aiodZsrWpi8HFfZfeRs8OS_0L5x6WBl3Y9btoZgsIeruc9uZ8NXTIdxaM6\
  FdnyNEyOYA1VH94tDYR-xEt1br1ud_dkPslLV_Aac7d7EaYc7cdkb7oC9t6sphVg0\
  dqE0UTDlOwBxBYMtGmQbJsFzGpmjzVgKqWqJ3B947li2U7t63HXEvKprY2w",
  "dq": "b0DzpSMb5p42dcQgOTU8Mr4S6JOEhRr_YjErMkpaXUEqvZ3jEB9HRmcRi5\
  Gtt4NBiBMiY6V9br8a5gjEpiAQoIUcWokBMAYjEeurU8M6JLBd3YaZVVjISaFmdty\
  nwLFoQxCh6_EC1rSywwrfDpSwO29S9i8Xbaap",
  "n": "hAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsPBRrwWEBnez6\
  d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsdJKFqMGmXCQvE\
  G7YemcxDTRPxAleIAgYYRjTSd_QBwVW9OwNFhekro3RtlinV0a75jfZgkne_YiktS\
  vLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKIlE0PuKxI4T-HIa\
  Fpv8-rdV6eUgOrB2xeI1dSFFn_nnv5OoZJEIB-VmuKn3DCUcCZSFlQPSXSfBDiUGh\
  wOw76WuSSsf1D4b_vLoJ10w"
}

B.1.2.  Example RSA-PSS Key

The following key is a 2048-bit RSA public and private key pair, referred to in this document as test-key-
rsa-pss. This key is PKCS #8 encoded in PEM format, with no encryption.
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-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr4tmm3r20Wd/PbqvP1s2
+QEtvpuRaV8Yq40gjUR8y2Rjxa6dpG2GXHbPfvMs8ct+Lh1GH45x28Rw3Ry53mm+
oAXjyQ86OnDkZ5N8lYbggD4O3w6M6pAvLkhk95AndTrifbIFPNU8PPMO7OyrFAHq
gDsznjPFmTOtCEcN2Z1FpWgchwuYLPL+Wokqltd11nqqzi+bJ9cvSKADYdUAAN5W
Utzdpiy6LbTgSxP7ociU4Tn0g5I6aDZJ7A8Lzo0KSyZYoA485mqcO0GVAdVw9lq4
aOT9v6d+nb4bnNkQVklLQ3fVAvJm+xdDOp9LCNCN48V2pnDOkFV6+U9nV5oyc6XI
2wIDAQAB
-----END PUBLIC KEY-----

-----BEGIN PRIVATE KEY-----
MIIEvgIBADALBgkqhkiG9w0BAQoEggSqMIIEpgIBAAKCAQEAr4tmm3r20Wd/Pbqv
P1s2+QEtvpuRaV8Yq40gjUR8y2Rjxa6dpG2GXHbPfvMs8ct+Lh1GH45x28Rw3Ry5
3mm+oAXjyQ86OnDkZ5N8lYbggD4O3w6M6pAvLkhk95AndTrifbIFPNU8PPMO7Oyr
FAHqgDsznjPFmTOtCEcN2Z1FpWgchwuYLPL+Wokqltd11nqqzi+bJ9cvSKADYdUA
AN5WUtzdpiy6LbTgSxP7ociU4Tn0g5I6aDZJ7A8Lzo0KSyZYoA485mqcO0GVAdVw
9lq4aOT9v6d+nb4bnNkQVklLQ3fVAvJm+xdDOp9LCNCN48V2pnDOkFV6+U9nV5oy
c6XI2wIDAQABAoIBAQCUB8ip+kJiiZVKF8AqfB/aUP0jTAqOQewK1kKJ/iQCXBCq
pbo360gvdt05H5VZ/RDVkEgO2k73VSsbulqezKs8RFs2tEmU+JgTI9MeQJPWcP6X
aKy6LIYs0E2cWgp8GADgoBs8llBq0UhX0KffglIeek3n7Z6Gt4YFge2TAcW2WbN4
XfK7lupFyo6HHyWRiYHMMARQXLJeOSdTn5aMBP0PO4bQyk5ORxTUSeOciPJUFktQ
HkvGbym7KryEfwH8Tks0L7WhzyP60PL3xS9FNOJi9m+zztwYIXGDQuKM2GDsITeD
2mI2oHoPMyAD0wdI7BwSVW18p1h+jgfc4dlexKYRAoGBAOVfuiEiOchGghV5vn5N
RDNscAFnpHj1QgMr6/UG05RTgmcLfVsI1I4bSkbrIuVKviGGf7atlkROALOG/xRx
DLadgBEeNyHL5lz6ihQaFJLVQ0u3U4SB67J0YtVO3R6lXcIjBDHuY8SjYJ7Ci6Z6
vuDcoaEujnlrtUhaMxvSfcUJAoGBAMPsCHXte1uWNAqYad2WdLjPDlKtQJK1diCm
rqmB2g8QE99hDOHItjDBEdpyFBKOIP+NpVtM2KLhRajjcL9Ph8jrID6XUqikQuVi
4J9FV2m42jXMuioTT13idAILanYg8D3idvy/3isDVkON0X3UAVKrgMEne0hJpkPL
FYqgetvDAoGBAKLQ6JZMbSe0pPIJkSamQhsehgL5Rs51iX4m1z7+sYFAJfhvN3Q/
OGIHDRp6HjMUcxHpHw7U+S1TETxePwKLnLKj6hw8jnX2/nZRgWHzgVcY+sPsReRx
NJVf+Cfh6yOtznfX00p+JWOXdSY8glSSHJwRAMog+hFGW1AYdt7w80XBAoGBAImR
NUugqapgaEA8TrFxkJmngXYaAqpA0iYRA7kv3S4QavPBUGtFJHBNULzitydkNtVZ
3w6hgce0h9YThTo/nKc+OZDZbgfN9s7cQ75x0PQCAO4fx2P91Q+mDzDUVTeG30mE
t2m3S0dGe47JiJxifV9P3wNBNrZGSIF3mrORBVNDAoGBAI0QKn2Iv7Sgo4T/XjND
dl2kZTXqGAk8dOhpUiw/HdM3OGWbhHj2NdCzBliOmPyQtAr770GITWvbAI+IRYyF
S7Fnk6ZVVVHsxjtaHy1uJGFlaZzKR4AGNaUTOJMs6NadzCmGPAxNQQOCqoUjn4XR
rOjr9w349JooGXhOxbu8nOxX
-----END PRIVATE KEY-----

The same public and private key pair in JWK format:
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NOTE: '\' line wrapping per RFC 8792

{
  "kty": "RSA",
  "kid": "test-key-rsa-pss",
  "p": "5V-6ISI5yEaCFXm-fk1EM2xwAWekePVCAyvr9QbTlFOCZwt9WwjUjhtKRus\
  i5Uq-IYZ_tq2WRE4As4b_FHEMtp2AER43IcvmXPqKFBoUktVDS7dThIHrsnRi1U7d\
  HqVdwiMEMe5jxKNgnsKLpnq-4NyhoS6OeWu1SFozG9J9xQk",
  "q": "w-wIde17W5Y0Cphp3ZZ0uM8OUq1AkrV2IKauqYHaDxAT32EM4ci2MMER2nI\
  UEo4g_42lW0zYouFFqONwv0-HyOsgPpdSqKRC5WLgn0VXabjaNcy6KhNPXeJ0Agtq\
  diDwPeJ2_L_eKwNWQ43RfdQBUquAwSd7SEmmQ8sViqB628M",
  "d": "lAfIqfpCYomVShfAKnwf2lD9I0wKjkHsCtZCif4kAlwQqqW6N-tIL3bdOR-\
  VWf0Q1ZBIDtpO91UrG7pansyrPERbNrRJlPiYEyPTHkCT1nD-l2isuiyGLNBNnFoK\
  fBgA4KAbPJZQatFIV9Cn34JSHnpN5-2ehreGBYHtkwHFtlmzeF3yu5bqRcqOhx8lk\
  YmBzDAEUFyyXjknU5-WjAT9DzuG0MpOTkcU1EnjnIjyVBZLUB5Lxm8puyq8hH8B_E\
  5LNC-1oc8j-tDy98UvRTTiYvZvs87cGCFxg0LijNhg7CE3g9piNqB6DzMgA9MHSOw\
  cElVtfKdYfo4H3OHZXsSmEQ",
  "e": "AQAB",
  "qi": "jRAqfYi_tKCjhP9eM0N2XaRlNeoYCTx06GlSLD8d0zc4ZZuEePY10LMGWI\
  6Y_JC0CvvvQYhNa9sAj4hFjIVLsWeTplVVUezGO1ofLW4kYWVpnMpHgAY1pRM4kyz\
  o1p3MKYY8DE1BA4KqhSOfhdGs6Ov3Dfj0migZeE7Fu7yc7Fc",
  "dp": "otDolkxtJ7Sk8gmRJqZCGx6GAvlGznWJfibXPv6xgUAl-G83dD84YgcNGn\
  oeMxRzEekfDtT5LVMRPF4_AoucsqPqHDyOdfb-dlGBYfOBVxj6w-xF5HE0lV_4J-H\
  rI63Od9fTSn4lY5d1JjyCVJIcnBEAyiD6EUZbUBh23vDzRcE",
  "dq": "iZE1S6CpqmBoQDxOsXGQmaeBdhoCqkDSJhEDuS_dLhBq88FQa0UkcE1QvO\
  K3J2Q21VnfDqGBx7SH1hOFOj-cpz45kNluB832ztxDvnHQ9AIA7h_HY_3VD6YPMNR\
  VN4bfSYS3abdLR0Z7jsmInGJ9X0_fA0E2tkZIgXeas5EFU0M",
  "n": "r4tmm3r20Wd_PbqvP1s2-QEtvpuRaV8Yq40gjUR8y2Rjxa6dpG2GXHbPfvM\
  s8ct-Lh1GH45x28Rw3Ry53mm-oAXjyQ86OnDkZ5N8lYbggD4O3w6M6pAvLkhk95An\
  dTrifbIFPNU8PPMO7OyrFAHqgDsznjPFmTOtCEcN2Z1FpWgchwuYLPL-Wokqltd11\
  nqqzi-bJ9cvSKADYdUAAN5WUtzdpiy6LbTgSxP7ociU4Tn0g5I6aDZJ7A8Lzo0KSy\
  ZYoA485mqcO0GVAdVw9lq4aOT9v6d-nb4bnNkQVklLQ3fVAvJm-xdDOp9LCNCN48V\
  2pnDOkFV6-U9nV5oyc6XI2w"
}

B.1.3.  Example ECC P-256 Test Key

The following key is a public and private elliptical curve key pair over the curve P-256, referred to in this
document as test-key-ecc-p256. This key is encoded in PEM format, with no encryption.

-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqIVYZVLCrPZHGHjP17CTW0/+D9Lf
w0EkjqF7xB4FivAxzic30tMM4GF+hR6Dxh71Z50VGGdldkkDXZCnTNnoXQ==
-----END PUBLIC KEY-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIFKbhfNZfpDsW43+0+JjUr9K+bTeuxopu653+hBaXGA7oAoGCCqGSM49
AwEHoUQDQgAEqIVYZVLCrPZHGHjP17CTW0/+D9Lfw0EkjqF7xB4FivAxzic30tMM
4GF+hR6Dxh71Z50VGGdldkkDXZCnTNnoXQ==
-----END EC PRIVATE KEY-----

The same public and private key pair in JWK format:
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{
  "kty": "EC",
  "crv": "P-256",
  "kid": "test-key-ecc-p256",
  "d": "UpuF81l-kOxbjf7T4mNSv0r5tN67Gim7rnf6EFpcYDs",
  "x": "qIVYZVLCrPZHGHjP17CTW0_-D9Lfw0EkjqF7xB4FivA",
  "y": "Mc4nN9LTDOBhfoUeg8Ye9WedFRhnZXZJA12Qp0zZ6F0"
}

B.1.4.  Example Ed25519 Test Key

The following key is an elliptical curve key over the Edwards curve ed25519, referred to in this document as
test-key-ed25519. This key is PKCS #8 encoded in PEM format, with no encryption.

-----BEGIN PUBLIC KEY-----
MCowBQYDK2VwAyEAJrQLj5P/89iXES9+vFgrIy29clF9CC/oPPsw3c5D0bs=
-----END PUBLIC KEY-----

-----BEGIN PRIVATE KEY-----
MC4CAQAwBQYDK2VwBCIEIJ+DYvh6SEqVTm50DFtMDoQikTmiCqirVv9mWG9qfSnF
-----END PRIVATE KEY-----

The same public and private key pair in JWK format:

{
  "kty": "OKP",
  "crv": "Ed25519",
  "kid": "test-key-ed25519",
  "d": "n4Ni-HpISpVObnQMW0wOhCKROaIKqKtW_2ZYb2p9KcU",
  "x": "JrQLj5P_89iXES9-vFgrIy29clF9CC_oPPsw3c5D0bs"
}

B.1.5.  Example Shared Secret

The following shared secret is 64 randomly generated bytes encoded in Base64, referred to in this document as
test-shared-secret:

NOTE: '\' line wrapping per RFC 8792

uzvJfB4u3N0Jy4T7NZ75MDVcr8zSTInedJtkgcu46YW4XByzNJjxBdtjUkdJPBt\
  bmHhIDi6pcl8jsasjlTMtDQ==

B.2.  Test Cases

This section provides non-normative examples that may be used as test cases to validate implementation
correctness. These examples are based on the following HTTP messages:

For requests, this test-request message is used:
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POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
  aPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
Content-Length: 18

{"hello": "world"}

For responses, this test-response message is used:

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Date: Tue, 20 Apr 2021 02:07:56 GMT
Content-Type: application/json
Content-Digest: sha-512=:mEWXIS7MaLRuGgxOBdODa3xqM1XdEvxoYhvlCFJ41Q\
  JgJc4GTsPp29l5oGX69wWdXymyU0rjJuahq4l5aGgfLQ==:
Content-Length: 23

{"message": "good dog"}

B.2.1.  Minimal Signature Using rsa-pss-sha512

This example presents a minimal signature using the rsa-pss-sha512 algorithm over test-request,
covering none of the components of the HTTP message but providing a timestamped signature proof of
possession of the key with a signer-provided nonce.

The corresponding signature base is:

NOTE: '\' line wrapping per RFC 8792

"@signature-params": ();created=1618884473;keyid="test-key-rsa-pss"\
  ;nonce="b3k2pp5k7z-50gnwp.yemd"

This results in the following Signature-Input and Signature header fields being added to the message under the
signature label sig-b21:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig-b21=();created=1618884473\
  ;keyid="test-key-rsa-pss";nonce="b3k2pp5k7z-50gnwp.yemd"
Signature: sig-b21=:d2pmTvmbncD3xQm8E9ZV2828BjQWGgiwAaw5bAkgibUopem\
  LJcWDy/lkbbHAve4cRAtx31Iq786U7it++wgGxbtRxf8Udx7zFZsckzXaJMkA7ChG\
  52eSkFxykJeNqsrWH5S+oxNFlD4dzVuwe8DhTSja8xxbR/Z2cOGdCbzR72rgFWhzx\
  2VjBqJzsPLMIQKhO4DGezXehhWwE56YCE+O6c0mKZsfxVrogUvA4HELjVKWmAvtl6\
  UnCh8jYzuVG5WSb/QEVPnP5TmcAnLH1g+s++v6d4s8m0gCw1fV5/SITLq9mhho8K3\
  +7EPYTU8IU1bLhdxO5Nyt8C8ssinQ98Xw9Q==:

Note that since the covered components list is empty, this signature could be applied by an attacker to an
unrelated HTTP message. In this example, the nonce parameter is included to prevent the same signature
from being replayed more than once, but if an attacker intercepts the signature and prevents its delivery to the
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verifier, the attacker could apply this signature to another message. Therefore, the use of an empty covered
components set is discouraged. See Section 7.2.1 for more discussion.

Note that the RSA-PSS algorithm in use here is non-deterministic, meaning that a different signature value will
be created every time the algorithm is run. The signature value provided here can be validated against the given
keys, but newly generated signature values are not expected to match the example. See Section 7.3.5.

B.2.2.  Selective Covered Components Using rsa-pss-sha512

This example covers additional components (the authority, the Content-Digest header field, and a single named
query parameter) in test-request using the rsa-pss-sha512 algorithm. This example also adds a tag
parameter with the application-specific value of header-example.

The corresponding signature base is:

NOTE: '\' line wrapping per RFC 8792

"@authority": example.com
"content-digest": sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX\
  +TaPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
"@query-param";name="Pet": dog
"@signature-params": ("@authority" "content-digest" \
  "@query-param";name="Pet")\
  ;created=1618884473;keyid="test-key-rsa-pss"\
  ;tag="header-example"

This results in the following Signature-Input and Signature header fields being added to the message under the
label sig-b22:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig-b22=("@authority" "content-digest" \
  "@query-param";name="Pet");created=1618884473\
  ;keyid="test-key-rsa-pss";tag="header-example"
Signature: sig-b22=:LjbtqUbfmvjj5C5kr1Ugj4PmLYvx9wVjZvD9GsTT4F7GrcQ\
  EdJzgI9qHxICagShLRiLMlAJjtq6N4CDfKtjvuJyE5qH7KT8UCMkSowOB4+ECxCmT\
  8rtAmj/0PIXxi0A0nxKyB09RNrCQibbUjsLS/2YyFYXEu4TRJQzRw1rLEuEfY17SA\
  RYhpTlaqwZVtR8NV7+4UKkjqpcAoFqWFQh62s7Cl+H2fjBSpqfZUJcsIk4N6wiKYd\
  4je2U/lankenQ99PZfB4jY3I5rSV2DSBVkSFsURIjYErOs0tFTQosMTAoxk//0RoK\
  UqiYY8Bh0aaUEb0rQl3/XaVe4bXTugEjHSw==:

Note that the RSA-PSS algorithm in use here is non-deterministic, meaning that a different signature value will
be created every time the algorithm is run. The signature value provided here can be validated against the given
keys, but newly generated signature values are not expected to match the example. See Section 7.3.5.

B.2.3.  Full Coverage Using rsa-pss-sha512

This example covers all applicable message components in test-request (including the content type and
length) plus many derived components, again using the rsa-pss-sha512 algorithm. Note that the Host
header field is not covered because the @authority derived component is included instead.

The corresponding signature base is:
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"date": Tue, 20 Apr 2021 02:07:55 GMT
"@method": POST
"@path": /foo
"@query": ?param=Value&Pet=dog
"@authority": example.com
"content-type": application/json
"content-digest": sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX\
  +TaPm+AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:
"content-length": 18
"@signature-params": ("date" "@method" "@path" "@query" \
  "@authority" "content-type" "content-digest" "content-length")\
  ;created=1618884473;keyid="test-key-rsa-pss"

This results in the following Signature-Input and Signature header fields being added to the message under the
label sig-b23:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig-b23=("date" "@method" "@path" "@query" \
  "@authority" "content-type" "content-digest" "content-length")\
  ;created=1618884473;keyid="test-key-rsa-pss"
Signature: sig-b23=:bbN8oArOxYoyylQQUU6QYwrTuaxLwjAC9fbY2F6SVWvh0yB\
  iMIRGOnMYwZ/5MR6fb0Kh1rIRASVxFkeGt683+qRpRRU5p2voTp768ZrCUb38K0fU\
  xN0O0iC59DzYx8DFll5GmydPxSmme9v6ULbMFkl+V5B1TP/yPViV7KsLNmvKiLJH1\
  pFkh/aYA2HXXZzNBXmIkoQoLd7YfW91kE9o/CCoC1xMy7JA1ipwvKvfrs65ldmlu9\
  bpG6A9BmzhuzF8Eim5f8ui9eH8LZH896+QIF61ka39VBrohr9iyMUJpvRX2Zbhl5Z\
  JzSRxpJyoEZAFL2FUo5fTIztsDZKEgM4cUA==:

Note in this example that the value of the Date header field and the value of the created signature parameter
need not be the same. This is due to the fact that the Date header field is added when creating the HTTP
message and the created parameter is populated when creating the signature over that message, and these
two times could vary. If the Date header field is covered by the signature, it is up to the verifier to determine
whether its value has to match that of the created parameter or not. See Section 7.2.4 for more discussion.

Note that the RSA-PSS algorithm in use here is non-deterministic, meaning that a different signature value will
be created every time the algorithm is run. The signature value provided here can be validated against the given
keys, but newly generated signature values are not expected to match the example. See Section 7.3.5.

B.2.4.  Signing a Response Using ecdsa-p256-sha256

This example covers portions of the test-response message using the ecdsa-p256-sha256 algorithm
and the key test-key-ecc-p256.

The corresponding signature base is:

NOTE: '\' line wrapping per RFC 8792

"@status": 200
"content-type": application/json
"content-digest": sha-512=:mEWXIS7MaLRuGgxOBdODa3xqM1XdEvxoYhvlCFJ4\
  1QJgJc4GTsPp29l5oGX69wWdXymyU0rjJuahq4l5aGgfLQ==:
"content-length": 23
"@signature-params": ("@status" "content-type" "content-digest" \
  "content-length");created=1618884473;keyid="test-key-ecc-p256"
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This results in the following Signature-Input and Signature header fields being added to the message under the
label sig-b24:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig-b24=("@status" "content-type" \
  "content-digest" "content-length");created=1618884473\
  ;keyid="test-key-ecc-p256"
Signature: sig-b24=:wNmSUAhwb5LxtOtOpNa6W5xj067m5hFrj0XQ4fvpaCLx0NK\
  ocgPquLgyahnzDnDAUy5eCdlYUEkLIj+32oiasw==:

Note that the ECDSA signature algorithm in use here is non-deterministic, meaning that a different signature
value will be created every time the algorithm is run. The signature value provided here can be validated
against the given keys, but newly generated signature values are not expected to match the example. See
Section 7.3.5.

B.2.5.  Signing a Request Using hmac-sha256

This example covers portions of the test-request message using the hmac-sha256 algorithm and the
secret test-shared-secret.

The corresponding signature base is:

NOTE: '\' line wrapping per RFC 8792

"date": Tue, 20 Apr 2021 02:07:55 GMT
"@authority": example.com
"content-type": application/json
"@signature-params": ("date" "@authority" "content-type")\
  ;created=1618884473;keyid="test-shared-secret"

This results in the following Signature-Input and Signature header fields being added to the message under the
label sig-b25:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig-b25=("date" "@authority" "content-type")\
  ;created=1618884473;keyid="test-shared-secret"
Signature: sig-b25=:pxcQw6G3AjtMBQjwo8XzkZf/bws5LelbaMk5rGIGtE8=:

Before using symmetric signatures in practice, see the discussion regarding security trade-offs in Section 7.3.3.

B.2.6.  Signing a Request Using ed25519

This example covers portions of the test-request message using the Ed25519 algorithm and the key
test-key-ed25519.

The corresponding signature base is:
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"date": Tue, 20 Apr 2021 02:07:55 GMT
"@method": POST
"@path": /foo
"@authority": example.com
"content-type": application/json
"content-length": 18
"@signature-params": ("date" "@method" "@path" "@authority" \
  "content-type" "content-length");created=1618884473\
  ;keyid="test-key-ed25519"

This results in the following Signature-Input and Signature header fields being added to the message under the
label sig-b26:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig-b26=("date" "@method" "@path" "@authority" \
  "content-type" "content-length");created=1618884473\
  ;keyid="test-key-ed25519"
Signature: sig-b26=:wqcAqbmYJ2ji2glfAMaRy4gruYYnx2nEFN2HN6jrnDnQCK1\
  u02Gb04v9EDgwUPiu4A0w6vuQv5lIp5WPpBKRCw==:

B.3.  TLS-Terminating Proxies

In this example, there is a TLS-terminating reverse proxy sitting in front of the resource. The client does not
sign the request but instead uses mutual TLS to make its call. The terminating proxy validates the TLS stream
and injects a Client-Cert header field according to [CLIENT-CERT], and then applies a signature to this field.
By signing this header field, a reverse proxy not only can attest to its own validation of the initial request's TLS
parameters but can also authenticate itself to the backend system independently of the client's actions.

The client makes the following request to the TLS-terminating proxy using mutual TLS:

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Length: 18

{"hello": "world"}

The proxy processes the TLS connection and extracts the client's TLS certificate to a Client-Cert header field
and passes it along to the internal service hosted at service.internal.example. This results in the
following unsigned request:
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POST /foo?param=Value&Pet=dog HTTP/1.1
Host: service.internal.example
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Length: 18
Client-Cert: :MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQKD\
  BJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBDQT\
  AeFw0yMDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDMFk\
  wEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXmck\
  C8vdgJ1p5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQYDV\
  R0TBAIwADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8BAf\
  8EBAMCBsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQGV\
  4YW1wbGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0Q6\
  bMjeSkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=:

{"hello": "world"}

Without a signature, the internal service would need to trust that the incoming connection has the right
information. By signing the Client-Cert header field and other portions of the internal request, the internal
service can be assured that the correct party, the trusted proxy, has processed the request and presented it to the
correct service. The proxy's signature base consists of the following:

NOTE: '\' line wrapping per RFC 8792

"@path": /foo
"@query": ?param=Value&Pet=dog
"@method": POST
"@authority": service.internal.example
"client-cert": :MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQ\
  KDBJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBD\
  QTAeFw0yMDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDM\
  FkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXm\
  ckC8vdgJ1p5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQY\
  DVR0TBAIwADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8B\
  Af8EBAMCBsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQ\
  GV4YW1wbGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0\
  Q6bMjeSkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=:
"@signature-params": ("@path" "@query" "@method" "@authority" \
  "client-cert");created=1618884473;keyid="test-key-ecc-p256"

This results in the following signature:

NOTE: '\' line wrapping per RFC 8792

xVMHVpawaAC/0SbHrKRs9i8I3eOs5RtTMGCWXm/9nvZzoHsIg6Mce9315T6xoklyy0y\
zhD9ah4JHRwMLOgmizw==

which results in the following signed request sent from the proxy to the internal service with the proxy's
signature under the label ttrp:
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NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1
Host: service.internal.example
Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json
Content-Length: 18
Client-Cert: :MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQKD\
  BJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBDQT\
  AeFw0yMDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDMFk\
  wEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXmck\
  C8vdgJ1p5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQYDV\
  R0TBAIwADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8BAf\
  8EBAMCBsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQGV\
  4YW1wbGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0Q6\
  bMjeSkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=:
Signature-Input: ttrp=("@path" "@query" "@method" "@authority" \
  "client-cert");created=1618884473;keyid="test-key-ecc-p256"
Signature: ttrp=:xVMHVpawaAC/0SbHrKRs9i8I3eOs5RtTMGCWXm/9nvZzoHsIg6\
  Mce9315T6xoklyy0yzhD9ah4JHRwMLOgmizw==:

{"hello": "world"}

The internal service can validate the proxy's signature and therefore be able to trust that the client's certificate
has been appropriately processed.

B.4.  HTTP Message Transformations

HTTP allows intermediaries and applications to transform an HTTP message without affecting the semantics of
the message itself. HTTP message signatures are designed to be robust against many of these transformations in
different circumstances.

For example, the following HTTP request message has been signed using the Ed25519 algorithm and the key
test-key-ed25519:

NOTE: '\' line wrapping per RFC 8792

GET /demo?name1=Value1&Name2=value2 HTTP/1.1
Host: example.org
Date: Fri, 15 Jul 2022 14:24:55 GMT
Accept: application/json
Accept: */*
Signature-Input: transform=("@method" "@path" "@authority" \
  "accept");created=1618884473;keyid="test-key-ed25519"
Signature: transform=:ZT1kooQsEHpZ0I1IjCqtQppOmIqlJPeo7DHR3SoMn0s5J\
  Z1eRGS0A+vyYP9t/LXlh5QMFFQ6cpLt2m0pmj3NDA==:

The signature base string for this message is:

"@method": GET
"@path": /demo
"@authority": example.org
"accept": application/json, */*
"@signature-params": ("@method" "@path" "@authority" "accept")\
  ;created=1618884473;keyid="test-key-ed25519"
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The following message has been altered by adding the Accept-Language header field as well as adding a query
parameter. However, since neither the Accept-Language header field nor the query is covered by the signature,
the same signature is still valid:

NOTE: '\' line wrapping per RFC 8792

GET /demo?name1=Value1&Name2=value2&param=added HTTP/1.1
Host: example.org
Date: Fri, 15 Jul 2022 14:24:55 GMT
Accept: application/json
Accept: */*
Accept-Language: en-US,en;q=0.5
Signature-Input: transform=("@method" "@path" "@authority" \
  "accept");created=1618884473;keyid="test-key-ed25519"
Signature: transform=:ZT1kooQsEHpZ0I1IjCqtQppOmIqlJPeo7DHR3SoMn0s5J\
  Z1eRGS0A+vyYP9t/LXlh5QMFFQ6cpLt2m0pmj3NDA==:

The following message has been altered by removing the Date header field, adding a Referer header field, and
collapsing the Accept header field into a single line. The Date and Referer header fields are not covered by the
signature, and the collapsing of the Accept header field is an allowed transformation that is already accounted
for by the canonicalization algorithm for HTTP field values. The same signature is still valid:

NOTE: '\' line wrapping per RFC 8792

GET /demo?name1=Value1&Name2=value2 HTTP/1.1
Host: example.org
Referer: https://developer.example.org/demo
Accept: application/json, */*
Signature-Input: transform=("@method" "@path" "@authority" \
  "accept");created=1618884473;keyid="test-key-ed25519"
Signature: transform=:ZT1kooQsEHpZ0I1IjCqtQppOmIqlJPeo7DHR3SoMn0s5J\
  Z1eRGS0A+vyYP9t/LXlh5QMFFQ6cpLt2m0pmj3NDA==:

The following message has been altered by reordering the field values of the original message but not
reordering the individual Accept header fields. The same signature is still valid:

NOTE: '\' line wrapping per RFC 8792

GET /demo?name1=Value1&Name2=value2 HTTP/1.1
Accept: application/json
Accept: */*
Date: Fri, 15 Jul 2022 14:24:55 GMT
Host: example.org
Signature-Input: transform=("@method" "@path" "@authority" \
  "accept");created=1618884473;keyid="test-key-ed25519"
Signature: transform=:ZT1kooQsEHpZ0I1IjCqtQppOmIqlJPeo7DHR3SoMn0s5J\
  Z1eRGS0A+vyYP9t/LXlh5QMFFQ6cpLt2m0pmj3NDA==:

The following message has been altered by changing the method to POST and the authority to
"example.com" (inside the Host header field). Since both the method and authority are covered by the
signature, the same signature is NOT still valid:
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NOTE: '\' line wrapping per RFC 8792

POST /demo?name1=Value1&Name2=value2 HTTP/1.1
Host: example.com
Date: Fri, 15 Jul 2022 14:24:55 GMT
Accept: application/json
Accept: */*
Signature-Input: transform=("@method" "@path" "@authority" \
  "accept");created=1618884473;keyid="test-key-ed25519"
Signature: transform=:ZT1kooQsEHpZ0I1IjCqtQppOmIqlJPeo7DHR3SoMn0s5J\
  Z1eRGS0A+vyYP9t/LXlh5QMFFQ6cpLt2m0pmj3NDA==:

The following message has been altered by changing the order of the two instances of the Accept header field.
Since the order of fields with the same name is semantically significant in HTTP, this changes the value used in
the signature base, and the same signature is NOT still valid:

NOTE: '\' line wrapping per RFC 8792

GET /demo?name1=Value1&Name2=value2 HTTP/1.1
Host: example.org
Date: Fri, 15 Jul 2022 14:24:55 GMT
Accept: */*
Accept: application/json
Signature-Input: transform=("@method" "@path" "@authority" \
  "accept");created=1618884473;keyid="test-key-ed25519"
Signature: transform=:ZT1kooQsEHpZ0I1IjCqtQppOmIqlJPeo7DHR3SoMn0s5J\
  Z1eRGS0A+vyYP9t/LXlh5QMFFQ6cpLt2m0pmj3NDA==:
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