
Internet Engineering Task Force (IETF) T. Bray, Editor
Request for Comments: 7493 Textuality Services
Category: Standards Track March 2015
ISSN: 2070-1721

The I-JSON Message Format

Abstract

I-JSON (short for "Internet JSON") is a restricted profile of JSON designed to maximize interoperability and
increase confidence that software can process it successfully with predictable results.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of
the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC
5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at http://www.rfc-editor.org/info/rfc74931.

Copyright Notice

Copyright © 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info2) in effect on the date of publication of this document. Please review
these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

1 http://www.rfc-editor.org/info/rfc7493
2 http://trustee.ietf.org/license-info

http://www.rfc-editor.org/info/rfc7493
http://trustee.ietf.org/license-info

RFC 7493 The I-JSON Message Format March 2015

Table of Contents

1 Introduction...3

1.1 Terminology...3

1.2 Requirements Language.. 3

2 I-JSON Messages.. 4

2.1 Encoding and Characters...4

2.2 Numbers... 4

2.3 Object Constraints... 4

3 Software Behavior.. 5

4 Recommendations for Protocol Design.. 6

4.1 Top-Level Constructs.. 6

4.2 Must-Ignore Policy.. 6

4.3 Time and Date Handling... 6

4.4 Binary Data..6

5 Security Considerations... 7

6 Normative References.. 8

Author's Address.. 10

Bray Standards Track [Page 2]

RFC 7493 The I-JSON Message Format March 2015

1. Introduction

RFC 7159 describes the JSON data interchange format, which is widely used in Internet protocols. For
historical reasons, that specification allows the use of language idioms and text encoding patterns that are likely
to lead to interoperability problems and software breakage, particularly when a program receiving JSON data
uses automated software to map it into native programming-language structures or database records. RFC 7159
describes practices that may be used to avoid these interoperability problems.

This document specifies I-JSON, short for "Internet JSON". The unit of definition is the "I-JSON message". I-
JSON messages are also "JSON texts" as defined in RFC 7159 but with certain extra constraints that enforce
the good interoperability practices described in that specification.

1.1. Terminology

The terms "object", "member", "array", "number", "name", and "string" in this document are to be interpreted
as described in RFC 7159 [RFC7159].

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].

Bray Standards Track [Page 3]

RFC 7493 The I-JSON Message Format March 2015

2. I-JSON Messages

An I-JSON message is a JSON text, as defined by RFC 7159.

2.1. Encoding and Characters

I-JSON messages MUST be encoded using UTF-8 [RFC3629].

Object member names, and string values in arrays and object members, MUST NOT include code points that
identify Surrogates or Noncharacters as defined by [UNICODE].

This applies both to characters encoded directly in UTF-8 and to those which are escaped; thus, "\uDEAD" is
invalid because it is an unpaired surrogate, while "\uD800\uDEAD" would be legal.

2.2. Numbers

Software that implements IEEE 754-2008 binary64 (double precision) numbers [IEEE754] is generally
available and widely used. Implementations that generate I-JSON messages cannot assume that receiving
implementations can process numeric values with greater magnitude or precision than provided by those
numbers. I-JSON messages SHOULD NOT include numbers that express greater magnitude or precision than
an IEEE 754 double precision number provides, for example, 1E400 or 3.141592653589793238462643383279.

An I-JSON sender cannot expect a receiver to treat an integer whose absolute value is greater than
9007199254740991 (i.e., that is outside the range [-(253)+1, (253)-1]) as an exact value.

For applications that require the exact interchange of numbers with greater magnitude or precision, it is
RECOMMENDED to encode them in JSON string values. This requires that the receiving program understand
the intended semantic of the value. An example would be 64-bit integers, even though modern hardware can
deal with them, because of the limited scope of JavaScript numbers.

2.3. Object Constraints

Objects in I-JSON messages MUST NOT have members with duplicate names. In this context, "duplicate"
means that the names, after processing any escaped characters, are identical sequences of Unicode characters.

The order of object members in an I-JSON message does not change the meaning of an I-JSON message. A
receiving implementation MAY treat two I-JSON messages as equivalent if they differ only in the order of the
object members.

Bray Standards Track [Page 4]

RFC 7493 The I-JSON Message Format March 2015

3. Software Behavior

A major advantage of using I-JSON is that receivers can avoid ambiguous semantics in the JSON messages
they receive. This allows receivers to reject or otherwise disregard messages that do not conform to the
requirements in this document for I-JSON messages. Protocols that use I-JSON messages can be written so that
receiving implementations are required to reject (or, as in the case of security protocols, not trust) messages that
do not satisfy the constraints of I-JSON.

Designers of protocols that use I-JSON messages SHOULD provide a way, in this case, for the receiver of the
erroneous data to signal the problem to the sender.

Bray Standards Track [Page 5]

RFC 7493 The I-JSON Message Format March 2015

4. Recommendations for Protocol Design

I-JSON is designed for use in Internet protocols. The following recommendations apply to the use of I-JSON in
such protocols.

4.1. Top-Level Constructs

An I-JSON message can be any JSON value. However, there are software implementations, coded to the older
specification [RFC4627], which only accept JSON objects or JSON arrays at the top level of JSON texts. For
maximum interoperability with such implementations, protocol designers SHOULD NOT use top-level JSON
texts that are neither objects nor arrays.

4.2. Must-Ignore Policy

It is frequently the case that changes to protocols are required after they have been put in production. Protocols
that allow the introduction of new protocol elements in a way that does not disrupt the operation of existing
software have proven advantageous in practice.

This can be referred to as a "Must-Ignore" policy, meaning that when an implementation encounters a protocol
element that it does not recognize, it should treat the rest of the protocol transaction as if the new element
simply did not appear, and in particular, the implementation MUST NOT treat this as an error condition. The
converse "Must-Understand" policy does not tolerate the introduction of new protocol elements, and while this
has proven necessary in certain protocol designs, in general it has been found to be overly restrictive and brittle.

A good way to support the use of Must-Ignore in I-JSON protocol designs is to require that top-level protocol
elements must be JSON objects, and to specify that members whose names are unrecognized MUST be
ignored.

4.3. Time and Date Handling

Protocols often contain data items that are designed to contain timestamps or time durations. It is
RECOMMENDED that all such data items be expressed as string values in ISO 8601 format, as specified
in [RFC3339], with the additional restrictions that uppercase rather than lowercase letters be used, that the
timezone be included not defaulted, and that optional trailing seconds be included even when their value is
"00". It is also RECOMMENDED that all data items containing time durations conform to the "duration"
production in Appendix A of RFC 3339, with the same additional restrictions.

4.4. Binary Data

When it is required that an I-JSON protocol element contain arbitrary binary data, it is RECOMMENDED that
this data be encoded in a string value in base64url; see Section 5 of [RFC4648].

Bray Standards Track [Page 6]

RFC 7493 The I-JSON Message Format March 2015

5. Security Considerations

All the security considerations that apply to JSON (see RFC 7159) apply to I-JSON. There are no additional
security considerations specific to I-JSON.

Since I-JSON forbids the use of certain JSON idioms that can lead to unpredictable behavior in receiving
software, it may prove a more secure basis for Internet protocols and may be a good choice for protocol
designers with special security needs.

Bray Standards Track [Page 7]

RFC 7493 The I-JSON Message Format March 2015

6. Normative References

[IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE 754-2008, 2008, <http://grouper.ieee.org
/groups/754/>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997, <http://www.rfc-editor.org/info/rfc>.

[RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, July 2002,
<http://www.rfc-editor.org/info/rfc>.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003,
<http://www.rfc-editor.org/info/rfc>.

[RFC4627] Crockford, D., "The application/json Media Type for JavaScript Object Notation (JSON)", RFC 4627,
July 2006, <http://www.rfc-editor.org/info/rfc>.

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October 2006, <http://w
ww.rfc-editor.org/info/rfc>.

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, March 2014,
<http://www.rfc-editor.org/info/rfc>.

[UNICODE] The Unicode Consortium, "The Unicode Standard", <http://www.unicode.org/versions/latest/>.

Bray Standards Track [Page 8]

http://grouper.ieee.org/groups/754/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc7159
http://www.unicode.org/versions/latest/

RFC 7493 The I-JSON Message Format March 2015

Acknowledgements

I-JSON is entirely dependent on the design of JSON, largely due to Douglas Crockford. The specifics were
strongly influenced by the contributors to the design of RFC 7159 in the IETF JSON Working Group.

Bray Standards Track [Page 9]

Author's Address

Tim Bray (editor)
Textuality Services
EMail: tbray@textuality.com
URI: https://www.tbray.org/

mailto:tbray@textuality.com
https://www.tbray.org/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Terminology
	1.2 Requirements Language

	2 I-JSON Messages
	2.1 Encoding and Characters
	2.2 Numbers
	2.3 Object Constraints

	3 Software Behavior
	4 Recommendations for Protocol Design
	4.1 Top-Level Constructs
	4.2 Must-Ignore Policy
	4.3 Time and Date Handling
	4.4 Binary Data

	5 Security Considerations
	6 Normative References
	Acknowledgements
	Author's Address

