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1. Introduction

QUIC is asecure, general-purpose transport protocol, described in [QUIC-TRANSPORT]. This document
describes | oss detection and congestion control mechanisms for QUIC.
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2. Conventions and Definitions

The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in al capitals,
as shown here.

Definitions of terms that are used in this document:

Ack-€liciting frames: All frames other than ACK, PADDING, and
CONNECTION_CLOSE are considered ack-€liciting.
Ack-dliciting packets: Packets that contain ack-eliciting frames elicit an ACK from the

receiver within the maximum acknowledgment delay and are called
ack-eliciting packets.

In-flight packets: Packets are considered in flight when they are ack-€liciting or
contain a PADDING frame, and they have been sent but are not
acknowledged, declared lost, or discarded along with old keys.
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3. Design of the QUIC Transmission Machinery

All transmissions in QUIC are sent with a packet-level header, which indicates the encryption level and
includes a packet sequence number (referred to below as a packet number). The encryption level indicates the
packet number space, as described in Section 12.3 of [QUIC-TRANSPORT]. Packet numbers never repeat
within a packet number space for the lifetime of a connection. Packet numbers are sent in monotonically
increasing order within a space, preventing ambiguity. It is permitted for some packet numbers to never be
used, leaving intentional gaps.

This design obviates the need for disambiguating between transmissions and retransmissions; this eliminates
significant complexity from QUIC's interpretation of TCP |loss detection mechanisms.

QUIC packets can contain multiple frames of different types. The recovery mechanisms ensure that data and
frames that need reliable delivery are acknowledged or declared lost and sent in new packets as necessary. The
types of frames contained in a packet affect recovery and congestion control logic:

« All packets are acknowledged, though packets that contain no ack-eliciting frames are only acknowledged
along with ack-eliciting packets.

* Long header packetsthat contain CRY PTO frames are critical to the performance of the QUIC handshake
and use shorter timers for acknowledgment.

» Packets containing frames besides ACK or CONNECTION_CL OSE frames count toward congestion
control limits and are considered to bein flight.

« PADDING frames cause packets to contribute toward bytes in flight without directly causing an
acknowledgment to be sent.
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4. Relevant Differences between QUIC and TCP

Readers familiar with TCP's loss detection and congestion control will find algorithms here that parallel well-
known TCP ones. However, protocol differences between QUIC and TCP contribute to algorithmic differences.
These protocol differences are briefly described below.

4.1. Separate Packet Number Spaces

QUIC uses separate packet number spaces for each encryption level, except O-RTT and al generations of 1-
RTT keys use the same packet number space. Separate packet number spaces ensures that the acknowledgment
of packets sent with one level of encryption will not cause spurious retransmission of packets sent with a
different encryption level. Congestion control and round-trip time (RTT) measurement are unified across
packet number spaces.

4.2. Monotonically Increasing Packet Numbers

TCP conflates transmission order at the sender with delivery order at the receiver, resulting in the
retransmission ambiguity problem [RETRANSMISSION]. QUIC separates transmission order from delivery
order: packet numbers indicate transmission order, and delivery order is determined by the stream offsetsin
STREAM frames.

QUIC's packet number is strictly increasing within a packet number space and directly encodes transmission
order. A higher packet number signifies that the packet was sent later, and alower packet number signifies
that the packet was sent earlier. When a packet containing ack-eliciting frames is detected lost, QUIC includes
necessary framesin anew packet with a new packet number, removing ambiguity about which packet is
acknowledged when an ACK isreceived. Consequently, more accurate RTT measurements can be made,
spurious retransmissions are trivially detected, and mechanisms such as Fast Retransmit can be applied
universally, based only on packet number.

This design point significantly simplifiesloss detection mechanisms for QUIC. Most TCP mechanisms
implicitly attempt to infer transmission ordering based on TCP sequence numbers -- anontrivial task,
especially when TCP timestamps are not available.

4.3. Clearer Loss Epoch

QUIC starts aloss epoch when a packet islost. The loss epoch ends when any packet sent after the start of the
epoch is acknowledged. TCP waits for the gap in the sequence number space to befilled, and so if a segment
islost multiple timesin arow, the loss epoch may not end for several round trips. Because both should reduce
their congestion windows only once per epoch, QUIC will do it once for every round trip that experiences | oss,
while TCP may only do it once across multiple round trips.

4.4. No Reneging

QUIC ACK frames contain information similar to that in TCP Selective Acknowledgments (SACKYs)
[RFC2018]. However, QUIC does not allow a packet acknowledgment to be reneged, greatly simplifying
implementations on both sides and reducing memory pressure on the sender.

4.5. More ACK Ranges

QUIC supports many ACK ranges, as opposed to TCP's three SACK ranges. In high-loss environments, this
speeds recovery, reduces spurious retransmits, and ensures forward progress without relying on timeouts.

lyengar & Swett Expires November 2021 [Page 7]



RFC 9002 QUIC Loss Detection May 2021

4.6. Explicit Correction for Delayed Acknowledgments

QUIC endpoints measure the delay incurred between when a packet is received and when the corresponding
acknowledgment is sent, allowing a peer to maintain a more accurate RTT estimate; see Section 13.2 of
[QUIC-TRANSPORT].

4.7. Probe Timeout ReplacesRTO and TLP

QUIC uses a probe timeout (PTO; see Section 6.2), with atimer based on TCP's retransmission timeout (RTO)
computation; see [RFC6298]. QUIC's PTO includes the peer's maximum expected acknowledgment delay
instead of using a fixed minimum timeout.

Similar to the RACK-TLP loss detection algorithm for TCP [RFC8985], QUIC does not collapse the
congestion window when the PTO expires, since a single packet loss at the tail does not indicate persistent
congestion. Instead, QUIC collapses the congestion window when persistent congestion is declared; see
Section 7.6. In doing this, QUIC avoids unnecessary congestion window reductions, obviating the need for
correcting mechanisms such as Forward RTO-Recovery (F-RTO) [RFC5682]. Since QUIC does not collapse
the congestion window on a PTO expiration, a QUIC sender is not limited from sending more in-flight packets
after aPTO expiration if it still has available congestion window. This occurs when a sender is application
limited and the PTO timer expires. Thisis more aggressive than TCP's RTO mechanism when application
limited, but identical when not application limited.

QUIC alows probe packets to temporarily exceed the congestion window whenever the timer expires.

4.8. The Minimum Congestion Window Is Two Packets

TCP uses aminimum congestion window of one packet. However, loss of that single packet means that the
sender needs to wait for a PTO to recover (Section 6.2), which can be much longer than an RTT. Sending a
single ack-eliciting packet also increases the chances of incurring additional latency when areceiver delaysits
acknowledgment.

QUIC therefore recommends that the minimum congestion window be two packets. While thisincreases
network load, it is considered safe since the sender will still reduce its sending rate exponentially under
persistent congestion (Section 6.2).

4.9. Handshake Packets Are Not Special

TCP treats the loss of SYN or SYN-ACK packet as persistent congestion and reduces the congestion window to
one packet; see [RFC5681]. QUIC treats loss of a packet containing handshake data the same as other losses.
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5. Estimating the Round-Trip Time

At ahigh level, an endpoint measures the time from when a packet was sent to when it is acknowledged as
an RTT sample. The endpoint uses RTT samples and peer-reported host delays (see Section 13.2 of [QUIC-
TRANSPORT]) to generate a statistical description of the network path's RTT. An endpoint computes the
following three values for each path: the minimum value over a period of time (min_rtt), an exponentially
weighted moving average (smoothed_rtt), and the mean deviation (referred to as "variation™ in the rest of this
document) in the observed RTT samples (rttvar).

5.1. Generating RTT Samples

An endpoint generates an RTT sample on receiving an ACK frame that meets the following two conditions:

» thelargest acknowledged packet number is newly acknowledged, and
o at least one of the newly acknowledged packets was ack-€liciting.

The RTT sample, latest_rtt, is generated as the time elapsed since the largest acknowledged packet was sent:

|atest _rtt = ack_time - send_tine_of _|argest_acked

An RTT sampleis generated using only the largest acknowledged packet in the received ACK frame. Thisis
because a peer reports acknowledgment delays for only the largest acknowledged packet in an ACK frame.
While the reported acknowledgment delay is not used by the RTT sample measurement, it is used to adjust the
RTT sample in subsequent computations of smoothed rtt and rttvar (Section 5.3).

To avoid generating multiple RTT samples for asingle packet, an ACK frame SHOULD NOT be used to
update RTT estimatesif it does not newly acknowledge the largest acknowledged packet.

An RTT sample MUST NOT be generated on receiving an ACK frame that does not newly acknowledge at
least one ack-eliciting packet. A peer usually does not send an ACK frame when only non-ack-eliciting packets
arereceived. Therefore, an ACK frame that contains acknowledgments for only non-ack-eliciting packets could
include an arbitrarily large ACK Delay value. Ignoring such ACK frames avoids complications in subsequent
smoothed_rtt and rttvar computations.

A sender might generate multiple RTT samples per RTT when multiple ACK frames are received within an
RTT. As suggested in [RFC6298], doing so might result in inadequate history in smoothed_rtt and rttvar.
Ensuring that RTT estimates retain sufficient history is an open research question.

5.2. Estimating min_rtt

min_rtt is the sender's estimate of the minimum RTT observed for a given network path over aperiod of time.
In this document, min_rtt is used by loss detection to reject implausibly small RTT samples.

min_rtt MUST be set to the latest_rtt on the first RTT sample. min_rtt MUST be set to the lesser of min_rtt and
latest_rtt (Section 5.1) on al other samples.

An endpoint uses only locally observed times in computing the min_rtt and does not adjust for
acknowledgment delays reported by the peer. Doing so allows the endpoint to set alower bound for the
smoothed_rtt based entirely on what it observes (see Section 5.3) and limits potential underestimation due to
erroneously reported delays by the peer.

The RTT for anetwork path may change over time. If apath's actual RTT decreases, the min_rtt will adapt
immediately on the first low sample. If the path's actual RTT increases, however, the min_rtt will not adapt to
it, allowing future RTT samplesthat are smaller than the new RTT to be included in smoothed rtt.

Endpoints SHOULD set the min_rtt to the newest RTT sample after persistent congestion is established. This
avoids repeatedly declaring persistent congestion when the RTT increases. This also alows a connection to
reset its estimate of min_rtt and smoothed_rtt after a disruptive network event; see Section 5.3.
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Endpoints MAY reestablish the min_rtt at other times in the connection, such as when traffic volumeis low
and an acknowledgment is received with alow acknowledgment delay. Implementations SHOULD NOT
refresh the min_rtt value too often since the actual minimum RTT of the path is not frequently observable.

5.3. Estimating smoothed_rtt and rttvar

smoothed_rtt is an exponentially weighted moving average of an endpoint's RTT samples, and rttvar estimates
the variation in the RTT samples using a mean variation.

The calculation of smoothed _rtt uses RTT samples after adjusting them for acknowledgment delays. These
delays are decoded from the ACK Delay field of ACK frames as described in Section 19.3 of [QUIC-
TRANSPORT].

The peer might report acknowledgment delays that are larger than the peer's max_ack delay during the
handshake (Section 13.2.1 of [QUIC-TRANSPORT]). To account for this, the endpoint SHOULD ignore
max_ack_delay until the handshake is confirmed, as defined in Section 4.1.2 of [QUIC-TLS]. When they
occur, these large acknowledgment delays are likely to be non-repeating and limited to the handshake. The
endpoint can therefore use them without limiting them to the max_ack_delay, avoiding unnecessary inflation of
the RTT estimate.

Note that alarge acknowledgment delay can result in a substantially inflated smoothed_rtt if thereis an error
either in the peer's reporting of the acknowledgment delay or in the endpoint's min_rtt estimate. Therefore,
prior to handshake confirmation, an endpoint MAY ignore RTT samplesif adjusting the RTT sample for
acknowledgment delay causes the sample to be less than the min_rtt.

After the handshake is confirmed, any acknowledgment delays reported by the peer that are greater than the
peer's max_ack_delay are attributed to unintentional but potentially repeating delays, such as scheduler latency
at the peer or loss of previous acknowledgments. Excess delays could also be due to a noncompliant receiver.
Therefore, these extra delays are considered effectively part of path delay and incorporated into the RTT
estimate.

Therefore, when adjusting an RTT sample using peer-reported acknowledgment delays, an endpoint:

e MAY ignore the acknowledgment delay for Initial packets, since these acknowledgments are not delayed
by the peer (Section 13.2.1 of [QUIC-TRANSPORT));

e SHOULD ignorethe peer's max_ack_delay until the handshake is confirmed;

e MUST use thelesser of the acknowledgment delay and the peer's max_ack delay after the handshakeis
confirmed; and

e MUST NOT subtract the acknowledgment delay from the RTT sampleif the resulting value is smaller than
the min_rtt. This limits the underestimation of the smoothed_rtt due to a misreporting peer.

Additionally, an endpoint might postpone the processing of acknowledgments when the corresponding
decryption keys are not immediately available. For example, a client might receive an acknowledgment for a
O-RTT packet that it cannot decrypt because 1-RTT packet protection keys are not yet availableto it. In such
cases, an endpoint SHOULD subtract such local delays from its RTT sample until the handshake is confirmed.

Similar to [RFC6298], smoothed rtt and rttvar are computed as follows.

An endpoint initializes the RTT estimator during connection establishment and when the estimator is reset
during connection migration; see Section 9.4 of [QUIC-TRANSPORT]. Before any RTT samples are available
for anew path or when the estimator is reset, the estimator isinitialized using the initial RTT; see Section 6.2.2.

smoothed_rtt and rttvar areinitialized as follows, where kinitialRtt containsthe initial RTT value:

snoot hed_rtt = klinitial Rtt
rttvar = klnitialRtt / 2

RTT samples for the network path are recorded in latest_rtt; see Section 5.1. On the first RTT sample after
initialization, the estimator is reset using that sample. This ensures that the estimator retains no history of past
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samples. Packets sent on other paths do not contribute RTT samplesto the current path, as described in Section
9.4 of [QUIC-TRANSPORT].

Onthefirst RTT sample after initialization, smoothed _rtt and rttvar are set as follows:

smoothed_rtt = latest_rtt
rttvar = latest_rtt / 2

On subsequent RTT samples, smoothed _rtt and rttvar evolve as follows:

ack_del ay = decoded acknow edgnent delay from ACK frane
i f (handshake confirned):
ack_del ay = nmin(ack_del ay, nmax_ack_del ay)

adjusted_rtt = latest _rtt
if (latest_rtt >= mn_rtt + ack_del ay):
adjusted_rtt = latest_rtt - ack_del ay

snoothed_rtt = 7/8 * snpothed_rtt + 1/8 * adjusted_rtt
rttvar_sanple = abs(smoothed_rtt - adjusted_rtt)
rttvar = 3/4 * rttvar + 1/4 * rttvar_sanple
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6. Loss Detection

QUIC senders use acknowledgments to detect lost packets and a PTO to ensure acknowledgments are received;

see Section 6.2. This section provides a description of these algorithms.

If apacket islost, the QUIC transport needs to recover from that loss, such as by retransmitting the data,
sending an updated frame, or discarding the frame. For more information, see Section 13.3 of [QUIC-
TRANSPORT].

L oss detection is separate per packet number space, unlike RTT measurement and congestion control, because
RTT and congestion control are properties of the path, whereas |oss detection also relies upon key availability.

6.1. Acknowledgment-Based Detection
Acknowledgment-based |oss detection implements the spirit of TCP's Fast Retransmit [RFC5681], Early

Retransmit [RFC5827], Forward Acknowledgment [FACK], SACK loss recovery [RFC6675], and RACK-TLP

[RFC8985]. This section provides an overview of how these algorithms are implemented in QUIC.
A packet isdeclared lost if it meets al of the following conditions:

» The packet is unacknowledged, in flight, and was sent prior to an acknowledged packet.

» The packet was sent kPacketThreshold packets before an acknowledged packet (Section 6.1.1), or it was
sent long enough in the past (Section 6.1.2).

The acknowledgment indicates that a packet sent later was delivered, and the packet and time thresholds
provide some tolerance for packet reordering.

Spuriously declaring packets as lost leads to unnecessary retransmissions and may result in degraded
performance due to the actions of the congestion controller upon detecting loss. |mplementations can detect
spurious retransmissions and increase the packet or time reordering threshold to reduce future spurious
retransmissions and loss events. | mplementations with adaptive time thresholds MAY choose to start with
smaller initial reordering thresholds to minimize recovery latency.

6.1.1. Packet Threshold

The RECOMMENDED initia value for the packet reordering threshold (kPacketThreshold) is 3, based on best
practices for TCP loss detection [RFC5681] [RFC6675]. In order to remain similar to TCP, implementations
SHOULD NOT use a packet threshold less than 3; see [RFC5681].

Some networks may exhibit higher degrees of packet reordering, causing a sender to detect spurious losses.
Additionally, packet reordering could be more common with QUIC than TCP because network elements that
could observe and reorder TCP packets cannot do that for QUIC and also because QUIC packet numbers are
encrypted. Algorithms that increase the reordering threshold after spuriously detecting losses, such as RACK
[RFC8985], have proven to be useful in TCP and are expected to be at least as useful in QUIC.

6.1.2. TimeThreshold

Once alater packet within the same packet number space has been acknowledged, an endpoint SHOULD
declare an earlier packet lost if it was sent a threshold amount of timein the past. To avoid declaring packets
as lost too early, thistime threshold MUST be set to at least the local timer granularity, asindicated by the
kGranularity constant. The time threshold is:

max( kTi meThreshol d * max(snmoothed rtt, latest rtt), kG anularity)

If packets sent prior to the largest acknowledged packet cannot yet be declared lost, then atimer SHOULD be
set for the remaining time.

Using max(smoothed_rtt, latest_rtt) protects from the two following cases:
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« thelatest RTT sampleislower than the smoothed RTT, perhaps due to reordering where the
acknowledgment encountered a shorter path;

» thelatest RTT sampleis higher than the smoothed RTT, perhaps due to a sustained increase in the actual
RTT, but the smoothed RTT has not yet caught up.

The RECOMMENDED time threshold (kTimeThreshold), expressed asan RTT multiplier, is 9/8. The
RECOMMENDED value of the timer granularity (kGranularity) is 1 millisecond.

Note: TCP's RACK [RFC8985] specifies adlightly larger threshold, equivalent to 5/4, for asimilar
purpose. Experience with QUIC shows that 9/8 works well.

Implementations MAY experiment with absolute thresholds, thresholds from previous connections, adaptive
thresholds, or the including of RTT variation. Smaller thresholds reduce reordering resilience and increase
spurious retransmissions, and larger thresholds increase |oss detection delay.

6.2. Probe Timeout

A Probe Timeout (PTO) triggers the sending of one or two probe datagrams when ack-€liciting packets are not
acknowledged within the expected period of time or the server may not have validated the client's address. A
PTO enables a connection to recover from loss of tail packets or acknowledgments.

Aswith loss detection, the PTO is per packet number space. That is, a PTO value is computed per packet
number space.

A PTO timer expiration event does not indicate packet loss and MUST NOT cause prior unacknowledged
packets to be marked as lost. When an acknowledgment is received that newly acknowledges packets, loss
detection proceeds as dictated by the packet and time threshold mechanisms; see Section 6.1.

The PTO algorithm used in QUIC implements the reliability functions of Tail Loss Probe [RFC8985], RTO
[RFC5681], and F-RTO algorithms for TCP [RFC5682]. The timeout computation is based on TCP's RTO
period [RFC6298].

6.2.1. Computing PTO

When an ack-eliciting packet is transmitted, the sender schedules atimer for the PTO period as follows:

PTO = snmoothed rtt + nmax(4*rttvar, kG anularity) + max_ack_del ay

The PTO period is the amount of time that a sender ought to wait for an acknowledgment of a sent packet.
This time period includes the estimated network RTT (smoothed_rtt), the variation in the estimate (4* rttvar),
and max_ack_delay, to account for the maximum time by which areceiver might delay sending an
acknowledgment.

When the PTO isarmed for Initial or Handshake packet number spaces, the max_ack delay in the PTO period
computation is set to 0, since the peer is expected to not delay these packets intentionally; see Section 13.2.1 of
[QUIC-TRANSPORT].

The PTO period MUST be at least kGranularity to avoid the timer expiring immediately.

When ack-€liciting packets in multiple packet number spaces arein flight, the timer MUST be set to the earlier
value of the Initial and Handshake packet number spaces.

An endpoint MUST NOT set its PTO timer for the Application Data packet number space until the handshake
is confirmed. Doing so prevents the endpoint from retransmitting information in packets when either the

peer does not yet have the keys to process them or the endpoint does not yet have the keys to process their
acknowledgments. For example, this can happen when a client sends O-RTT packets to the server; it does so
without knowing whether the server will be able to decrypt them. Similarly, this can happen when a server
sends 1-RTT packets before confirming that the client has verified the server's certificate and can therefore read
these 1-RTT packets.
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A sender SHOULD restart its PTO timer every time an ack-€liciting packet is sent or acknowledged, or when
Initial or Handshake keys are discarded (Section 4.9 of [QUIC-TLS]). This ensures the PTO is always set based
on the latest estimate of the RTT and for the correct packet across packet number spaces.

When aPTO timer expires, the PTO backoff MUST be increased, resulting in the PTO period being set to
twice its current value. The PTO backoff factor is reset when an acknowledgment is received, except in the
following case. A server might take longer to respond to packets during the handshake than otherwise. To
protect such a server from repeated client probes, the PTO backoff isnot reset at a client that is not yet certain
that the server has finished validating the client's address. That is, a client does not reset the PTO backoff factor
on receiving acknowledgmentsin Initial packets.

This exponential reduction in the sender's rate isimportant because consecutive PTOs might be caused by loss
of packets or acknowledgments due to severe congestion. Even when there are ack-eliciting packetsin flight in
multiple packet number spaces, the exponential increase in PTO occurs across all spaces to prevent excess load
on the network. For example, atimeout in the Initial packet number space doubles the length of the timeout in
the Handshake packet number space.

The total length of time over which consecutive PTOs expire is limited by the idle timeout.

The PTO timer MUST NOT be set if atimer is set for time threshold |oss detection; see Section 6.1.2. A timer
that is set for time threshold loss detection will expire earlier than the PTO timer in most cases and is less likely
to spuriously retransmit data.

6.2.2. Handshakes and New Paths

Resumed connections over the same network MAY use the previous connection's final smoothed RTT value as
the resumed connection'sinitial RTT. When no previous RTT is available, theinitial RTT SHOULD be set to
333 milliseconds. This results in handshakes starting with a PTO of 1 second, as recommended for TCP's initial
RTO; see Section 2 of [RFC6298].

A connection MAY use the delay between sending aPATH_CHALLENGE and receiving a
PATH_RESPONSE to set theinitial RTT (seekinitialRtt in Appendix A.2) for anew path, but the delay
SHOULD NOT be considered an RTT sample.

When the Initial keys and Handshake keys are discarded (see Section 6.4), any Initial packets and Handshake
packets can no longer be acknowledged, so they are removed from bytes in flight. When Initial or Handshake
keys are discarded, the PTO and loss detection timers MUST be reset, because discarding keys indicates
forward progress and the loss detection timer might have been set for a now-discarded packet number space.

6.2.2.1. Before AddressValidation

Until the server has validated the client's address on the path, the amount of data it can send is limited to three
times the amount of data received, as specified in Section 8.1 of [QUIC-TRANSPORT]. If no additional data

can be sent, the server's PTO timer MUST NOT be armed until datagrams have been received from the client

because packets sent on PTO count against the anti-amplification limit.

When the server receives a datagram from the client, the amplification limit isincreased and the server resets
the PTO timer. If the PTO timer isthen set to atime in the past, it is executed immediately. Doing so avoids
sending new 1-RTT packets prior to packets critical to the completion of the handshake. In particular, this can
happen when O-RTT is accepted but the server failsto validate the client's address.

Since the server could be blocked until more datagrams are received from the client, it isthe client's
responsibility to send packets to unblock the server until it is certain that the server has finished its address
validation (see Section 8 of [QUIC-TRANSPORT]). That is, the client MUST set the PTO timer if the client
has not received an acknowledgment for any of its Handshake packets and the handshake is not confirmed
(see Section 4.1.2 of [QUIC-TLS]), even if there are no packetsin flight. When the PTO fires, the client
MUST send a Handshake packet if it has Handshake keys, otherwise it MUST send an Initial packet inaUDP
datagram with a payload of at least 1200 bytes.
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6.2.3. Speeding up Handshake Completion

When a server receives an Initial packet containing duplicate CRY PTO data, it can assume the client did not
receive al of the server's CRYPTO data sent in Initial packets, or the client's estimated RTT istoo small. When
aclient receives Handshake or 1-RTT packets prior to obtaining Handshake keys, it may assume some or all of
the server's Initial packets were lost.

To speed up handshake completion under these conditions, an endpoint MAY, for alimited number of times
per connection, send a packet containing unacknowledged CRY PTO data earlier than the PTO expiry, subject
to the address validation limitsin Section 8.1 of [QUIC-TRANSPORT]. Doing so at most once for each
connection is adequate to quickly recover from a single packet loss. An endpoint that always retransmits
packetsin response to receiving packets that it cannot process risks creating an infinite exchange of packets.

Endpoints can also use coalesced packets (see Section 12.2 of [QUIC-TRANSPORT]) to ensure that each
datagram elicits at least one acknowledgment. For example, a client can coalesce an Initial packet containing
PING and PADDING frameswith a0-RTT data packet, and a server can coalesce an Initial packet containing a
PING frame with one or more packetsin itsfirst flight.

6.2.4. Sending Probe Packets

When a PTO timer expires, asender MUST send at least one ack-eliciting packet in the packet number space
asapraobe. An endpoint MAY send up to two full-sized datagrams containing ack-eliciting packets to avoid an
expensive consecutive PTO expiration due to asingle lost datagram or to transmit data from multiple packet
number spaces. All probe packets sent on aPTO MUST be ack-€liciting.

In addition to sending data in the packet number space for which the timer expired, the sender SHOULD send
ack-eliciting packets from other packet number spaces with in-flight data, coalescing packetsif possible. Thisis
particularly valuable when the server has both Initial and Handshake data in flight or when the client has both
Handshake and Application Data in flight because the peer might only have receive keys for one of the two
packet number spaces.

If the sender wants to elicit afaster acknowledgment on PTO, it can skip a packet number to eliminate the
acknowledgment delay.

An endpoint SHOULD include new data in packets that are sent on PTO expiration. Previously sent data MAY
be sent if no new data can be sent. Implementations MAY use alternative strategies for determining the content
of probe packets, including sending new or retransmitted data based on the application's priorities.

It is possible the sender has no new or previously sent data to send. As an example, consider the following
sequence of events: new application datais sent in a STREAM frame, deemed lost, then retransmitted in a
new packet, and then the original transmission is acknowledged. When there is no data to send, the sender
SHOULD send a PING or other ack-eliciting framein a single packet, rearming the PTO timer.

Alternatively, instead of sending an ack-eliciting packet, the sender MAY mark any packets till in flight as
lost. Doing so avoids sending an additional packet but increases the risk that lossis declared too aggressively,
resulting in an unnecessary rate reduction by the congestion controller.

Consecutive PTO periods increase exponentially, and as a result, connection recovery latency increases
exponentially as packets continue to be dropped in the network. Sending two packets on PTO expiration
increases resilience to packet drops, thus reducing the probability of consecutive PTO events.

When the PTO timer expires multiple times and new data cannot be sent, implementations must choose
between sending the same payload every time or sending different payloads. Sending the same payload may be
simpler and ensures the highest priority frames arrive first. Sending different payloads each time reduces the
chances of spurious retransmission.

lyengar & Swett Expires November 2021 [Page 15]


https://www.rfc-editor.org/rfc/rfc9000.html#section-8.1
https://www.rfc-editor.org/rfc/rfc9000.html#section-12.2

RFC 9002 QUIC Loss Detection May 2021

6.3. Handling Retry Packets

A Retry packet causes a client to send another Initial packet, effectively restarting the connection process. A
Retry packet indicates that the Initial packet was received but not processed. A Retry packet cannot be treated
as an acknowledgment because it does not indicate that a packet was processed or specify the packet number.

Clients that receive a Retry packet reset congestion control and loss recovery state, including resetting any
pending timers. Other connection state, in particular cryptographic handshake messages, is retained; see
Section 17.2.5 of [QUIC-TRANSPORT].

Theclient MAY compute an RTT estimate to the server as the time period from when the first Initial packet
was sent to when a Retry or a Version Negotiation packet is received. Theclient MAY usethisvaluein place
of its default for the initial RTT estimate.

6.4. Discarding Keysand Packet State

When Initial and Handshake packet protection keys are discarded (see Section 4.9 of [QUIC-TLS)), al packets
that were sent with those keys can no longer be acknowledged because their acknowledgments cannot be
processed. The sender MUST discard all recovery state associated with those packets and MUST remove them
from the count of bytesin flight.

Endpoints stop sending and receiving Initial packets once they start exchanging Handshake packets; see
Section 17.2.2.1 of [QUIC-TRANSPORT]. At this point, recovery state for al in-flight Initial packetsis
discarded.

When O-RTT isrejected, recovery state for all in-flight O-RTT packetsis discarded.

If aserver accepts O-RTT, but does not buffer O-RTT packets that arrive before Initial packets, early O-RTT
packets will be declared lost, but that is expected to be infrequent.

It is expected that keys are discarded at some time after the packets encrypted with them are either
acknowledged or declared lost. However, Initial and Handshake secrets are discarded as soon as Handshake
and 1-RTT keys are proven to be available to both client and server; see Section 4.9.1 of [QUIC-TLS].
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7. Congestion Control

This document specifies a sender-side congestion controller for QUIC similar to TCP NewReno [RFC6582].

The signals QUIC provides for congestion control are generic and are designed to support different sender-side
algorithms. A sender can unilaterally choose a different algorithm to use, such as CUBIC [RFC8312].

If asender uses a different controller than that specified in this document, the chosen controller MUST conform
to the congestion control guidelines specified in Section 3.1 of [RFC8085].

Similar to TCP, packets containing only ACK frames do not count toward bytesin flight and are not congestion
controlled. Unlike TCP, QUIC can detect the loss of these packets and MAY use that information to adjust

the congestion controller or the rate of ACK-only packets being sent, but this document does not describe a
mechanism for doing so.

The congestion controller is per path, so packets sent on other paths do not alter the current path's congestion
controller, as described in Section 9.4 of [QUIC-TRANSPORT].

The agorithm in this document specifies and uses the controller's congestion window in bytes.

An endpoint MUST NOT send a packet if it would cause bytes in_flight (see Appendix B.2) to be larger than
the congestion window, unless the packet is sent on a PTO timer expiration (see Section 6.2) or when entering
recovery (see Section 7.3.2).

7.1. Explicit Congestion Natification

If a path has been validated to support Explicit Congestion Notification (ECN) [RFC3168] [RFC8311], QUIC
treats a Congestion Experienced (CE) codepoint in the |P header asasignal of congestion. This document
specifies an endpoint's response when the peer-reported ECN-CE count increases; see Section 13.4.2 of [QUIC-
TRANSPORT].

7.2. Initial and Minimum Congestion Window

QUIC begins every connection in slow start with the congestion window set to an initial value. Endpoints
SHOULD use aninitia congestion window of ten times the maximum datagram size (max_datagram_size),
while limiting the window to the larger of 14,720 bytes or twice the maximum datagram size. Thisfollows
the analysis and recommendations in [RFC6928], increasing the byte limit to account for the smaller 8-byte
overhead of UDP compared to the 20-byte overhead for TCP.

If the maximum datagram size changes during the connection, the initial congestion window SHOULD be
recal culated with the new size. If the maximum datagram size is decreased in order to complete the handshake,
the congestion window SHOULD be set to the new initial congestion window.

Prior to validating the client's address, the server can be further limited by the anti-amplification limit as
specified in Section 8.1 of [QUIC-TRANSPORT]. Though the anti-amplification limit can prevent the
congestion window from being fully utilized and therefore slow down the increase in congestion window, it
does not directly affect the congestion window.

The minimum congestion window is the smallest value the congestion window can attain in response to loss,
an increase in the peer-reported ECN-CE count, or persistent congestion. The RECOMMENDED valueis2 *
max_datagram_size.

7.3. Congestion Control States

The NewReno congestion controller described in this document has three distinct states, as shown in Figure 1.
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Figure 1: Congestion Control States and Transitions

These states and the transitions between them are described in subsequent sections.

7.3.1. Slow Start

A NewReno sender isin slow start any time the congestion window is below the slow start threshold. A sender
beginsin slow start because the slow start threshold isinitialized to an infinite value.

While asender isin slow start, the congestion window increases by the number of bytes acknowledged when
each acknowledgment is processed. This results in exponential growth of the congestion window.

The sender MUST exit slow start and enter arecovery period when a packet islost or when the ECN-CE count
reported by its peer increases.

A sender reenters slow start any time the congestion window is less than the slow start threshold, which only
occurs after persistent congestion is declared.

7.3.2. Recovery

A NewReno sender enters arecovery period when it detects the |oss of a packet or when the ECN-CE count
reported by its peer increases. A sender that is already in arecovery period staysin it and does not reenter it.

On entering arecovery period, a sender MUST set the slow start threshold to half the value of the congestion
window when loss is detected. The congestion window MUST be set to the reduced value of the slow start
threshold before exiting the recovery period.

Implementations MAY reduce the congestion window immediately upon entering a recovery period or use
other mechanisms, such as Proportional Rate Reduction [PRR], to reduce the congestion window more
gradually. If the congestion window is reduced immediately, a single packet can be sent prior to reduction.
This speeds up loss recovery if the datain the lost packet is retransmitted and is similar to TCP as described in
Section 5 of [RFC6675].

The recovery period aims to limit congestion window reduction to once per round trip. Therefore, during a
recovery period, the congestion window does not change in response to new losses or increases in the ECN-CE
count.

A recovery period ends and the sender enters congestion avoidance when a packet sent during the recovery
period is acknowledged. Thisis slightly different from TCP's definition of recovery, which ends when the lost
segment that started recovery is acknowledged [RFC5681].
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7.3.3. Congestion Avoidance

A NewReno sender is in congestion avoidance any time the congestion window is at or above the slow start
threshold and not in arecovery period.

A sender in congestion avoidance uses an Additive Increase Multiplicative Decrease (AIMD) approach that
MUST limit the increase to the congestion window to at most one maximum datagram size for each congestion
window that is acknowledged.

The sender exits congestion avoidance and enters arecovery period when a packet islost or when the ECN-CE
count reported by its peer increases.

7.4. lIgnoring Loss of Undecryptable Packets

During the handshake, some packet protection keys might not be available when a packet arrives, and the
receiver can choose to drop the packet. In particular, Handshake and O-RTT packets cannot be processed until
the Initial packets arrive, and 1-RTT packets cannot be processed until the handshake compl etes. Endpoints
MAY ignore the loss of Handshake, O-RTT, and 1-RTT packets that might have arrived before the peer had
packet protection keys to process those packets. Endpoints MUST NOT ignore the loss of packets that were
sent after the earliest acknowledged packet in a given packet number space.

7.5. Probe Timeout

Probe packets MUST NOT be blocked by the congestion controller. A sender MUST however count these
packets as being additionally in flight, since these packets add network load without establishing packet loss.
Note that sending probe packets might cause the sender's bytesin flight to exceed the congestion window until
an acknowledgment is received that establishes |oss or delivery of packets.

7.6. Persistent Congestion
When a sender establishes loss of all packets sent over along enough duration, the network is considered to be
experiencing persistent congestion.

7.6.1. Duration

The persistent congestion duration is computed as follows:

(snoothed rtt + max(4*rttvar, kGranularity) + max_ack _del ay) *
kPer si st ent Congesti onThreshol d

Unlike the PTO computation in Section 6.2, this duration includes the max_ack delay irrespective of the packet
number spaces in which losses are established.

This duration allows a sender to send as many packets before establishing persistent congestion, including
somein response to PTO expiration, as TCP does with Tail Loss Probes [RFC8985] and an RTO [RFC5681].

Larger values of kPersistentCongestionThreshold cause the sender to become less responsive to persistent
congestion in the network, which can result in aggressive sending into a congested network. Too small avalue
can result in a sender declaring persistent congestion unnecessarily, resulting in reduced throughput for the
sender.

The RECOMMENDED value for kPersistentCongestionT hreshold is 3, which resultsin behavior that is
approximately equivalent to a TCP sender declaring an RTO after two TLPs.

This design does not use consecutive PTO events to establish persistent congestion, since application patterns
impact PTO expiration. For example, a sender that sends small amounts of data with silence periods between
them restarts the PTO timer every time it sends, potentially preventing the PTO timer from expiring for along
period of time, even when no acknowledgments are being received. The use of a duration enables a sender to
establish persistent congestion without depending on PTO expiration.
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7.6.2. Establishing Persistent Congestion

A sender establishes persistent congestion after the receipt of an acknowledgment if two packets that are ack-
diciting are declared lost, and:

« across al packet number spaces, none of the packets sent between the send times of these two packets are
acknowledged;

» theduration between the send times of these two packets exceeds the persistent congestion duration
(Section 7.6.1); and

e aprior RTT sample existed when these two packets were sent.

These two packets MUST be ack-eliciting, since areceiver is required to acknowledge only ack-eliciting
packets within its maximum acknowledgment delay; see Section 13.2 of [QUIC-TRANSPORT].

The persistent congestion period SHOULD NOT start until thereis at least one RTT sample. Before the first
RTT sample, asender armsits PTO timer based on theinitial RTT (Section 6.2.2), which could be substantially
larger than the actual RTT. Requiring aprior RTT sample prevents a sender from establishing persistent
congestion with potentially too few probes.

Since network congestion is not affected by packet number spaces, persistent congestion SHOULD consider
packets sent across packet number spaces. A sender that does not have state for all packet number spaces or an
implementation that cannot compare send times across packet number spaces MAY use state for just the packet
number space that was acknowledged. This might result in erroneously declaring persistent congestion, but it
will not lead to afailure to detect persistent congestion.

When persistent congestion is declared, the sender's congestion window MUST be reduced to the minimum
congestion window (KMinimumWindow), similar to a TCP sender's response on an RTO [RFC5681].
7.6.3. Example

The following example illustrates how a sender might establish persistent congestion. Assume:

snoot hed_rtt + max(4*rttvar, kGranularity) + max_ack delay = 2
kPer si st ent Congesti onThreshold = 3

Consider the following sequence of events:

Time Action

t=0 Send packet #1 (application data)

t=1 Send packet #2 (application data)

t=1.2 Receive acknowledgment of #1

t=2 Send packet #3 (application data)

t=3 Send packet #4 (application data)

t=4 Send packet #5 (application data)

t=5 Send packet #6 (application data)

t=6 Send packet #7 (application data)

t=8 Send packet #8 (PTO 1)

t=12 Send packet #9 (PTO 2)

t=12.2 Receive acknowledgment of #9
Tablel

Packets 2 through 8 are declared lost when the acknowledgment for packet Qisreceivedatt = 12. 2,

The congestion period is calculated as the time between the oldest and newest lost packets: 8 - 1 = 7.The
persistent congestion durationis2 * 3 = 6. Because the threshold was reached and because none of the
packets between the oldest and the newest lost packets were acknowledged, the network is considered to have
experienced persistent congestion.
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While this example shows PTO expiration, they are not required for persistent congestion to be established.

7.7. Pacing

A sender SHOUL D pace sending of al in-flight packets based on input from the congestion controller.

Sending multiple packets into the network without any delay between them creates a packet burst that might
cause short-term congestion and losses. Senders MUST either use pacing or limit such bursts. Senders
SHOULD limit burststo the initial congestion window; see Section 7.2. A sender with knowledge that the
network path to the receiver can absorb larger bursts MAY use a higher limit.

An implementation should take care to architect its congestion controller to work well with a pacer. For
instance, a pacer might wrap the congestion controller and control the availability of the congestion window, or
a pacer might pace out packets handed to it by the congestion controller.

Timely delivery of ACK framesisimportant for efficient loss recovery. To avoid delaying their delivery to the
peer, packets containing only ACK frames SHOULD therefore not be paced.

Endpoints can implement pacing as they choose. A perfectly paced sender spreads packets exactly evenly over
time. For awindow-based congestion controller, such as the one in this document, that rate can be computed
by averaging the congestion window over the RTT. Expressed as arate in units of bytes per time, where
congestion_window isin bytes:

rate = N * congestion_w ndow / snoothed_rtt

Or expressed as an inter-packet interval in units of time:

interval = ( snoothed rtt * packet_size / congestion window) / N

Using avalue for Nthat is small, but at least 1 (for example, 1.25) ensures that variationsin RTT do not result
in underutilization of the congestion window.

Practical considerations, such as packetization, scheduling delays, and computational efficiency, can cause a
sender to deviate from this rate over time periods that are much shorter than an RTT.

One possible implementation strategy for pacing uses aleaky bucket algorithm, where the capacity of the
"bucket" is limited to the maximum burst size and the rate the "bucket” fillsis determined by the above
function.

7.8. Underutilizing the Congestion Window

When bytesin flight is smaller than the congestion window and sending is not pacing limited, the congestion
window is underutilized. This can happen due to insufficient application data or flow control limits. When this
occurs, the congestion window SHOULD NOT be increased in either low start or congestion avoidance.

A sender that paces packets (see Section 7.7) might delay sending packets and not fully utilize the congestion
window due to this delay. A sender SHOULD NOT consider itself application limited if it would have fully
utilized the congestion window without pacing delay.

A sender MAY implement alternative mechanisms to update its congestion window after periods of
underutilization, such as those proposed for TCP in [RFC7661].
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8. Security Considerations

8.1. Lossand Congestion Signals

L oss detection and congestion control fundamentally involve the consumption of signals, such as delay, loss,
and ECN markings, from unauthenticated entities. An attacker can cause endpoints to reduce their sending rate
by manipulating these signals: by dropping packets, by atering path delay strategically, or by changing ECN
codepoaints.

8.2. Traffic Analysis

Packets that carry only ACK frames can be heuristically identified by observing packet size. Acknowledgment
patterns may expose information about link characteristics or application behavior. To reduce leaked
information, endpoints can bundle acknowledgments with other frames, or they can use PADDING frames at a
potential cost to performance.

8.3. Misreporting ECN Markings

A receiver can misreport ECN markings to alter the congestion response of a sender. Suppressing reports of
ECN-CE markings could cause a sender to increase their send rate. Thisincrease could result in congestion and
loss.

A sender can detect suppression of reports by marking occasional packets that it sends with an ECN-CE
marking. If a packet sent with an ECN-CE marking is not reported as having been CE marked when the packet
is acknowledged, then the sender can disable ECN for that path by not setting ECN-Capable Transport (ECT)
codepoints in subsequent packets sent on that path [RFC3168].

Reporting additional ECN-CE markings will cause a sender to reduce their sending rate, which is similar in
effect to advertising reduced connection flow control limits and so no advantage is gained by doing so.

Endpoints choose the congestion controller that they use. Congestion controllers respond to reports of ECN-CE
by reducing their rate, but the response may vary. Markings can be treated as equivalent to loss [RFC3168], but
other responses can be specified, such as [RFC8511] or [RFC8311].
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Appendix A. LossRecovery Pseudocode

We now describe an example implementation of the loss detection mechanisms described in Section 6.
The pseudocode segments in this section are licensed as Code Components; see the copyright notice.

A.l. Tracking Sent Packets

To correctly implement congestion control, a QUIC sender tracks every ack-eliciting packet until the packet
is acknowledged or lost. It is expected that implementations will be able to access this information by packet
number and crypto context and store the per-packet fields (Appendix A.1.1) for loss recovery and congestion
control.

After apacket is declared lost, the endpoint can still maintain state for it for an amount of time to allow
for packet reordering; see Section 13.3 of [QUIC-TRANSPORT]. This enables a sender to detect spurious
retransmissions.

Sent packets are tracked for each packet number space, and ACK processing only applies to a single space.

A.1.1. Sent Packet Fields
packet_number: The packet number of the sent packet.

ack_dliciting: A Boolean that indicates whether a packet is ack-eliciting. If true, it is expected that
an acknowledgment will be received, though the peer could delay sending the ACK
frame containing it by up to the max_ack_delay.

in_flight: A Boolean that indicates whether the packet counts toward bytesin flight.

sent_bytes: The number of bytes sent in the packet, not including UDP or |P overhead, but
including QUIC framing overhead.

time_sent: The time the packet was sent.

A.2. Constantsof Interest

Constants used in loss recovery are based on a combination of RFCs, papers, and common practice.

kPacketThreshold: Maximum reordering in packets before packet threshold loss detection
considers a packet lost. The value recommended in Section 6.1.1is 3.

kTimeThreshold: Maximum reordering in time before time threshold |oss detection
considers a packet lost. Specified asan RTT multiplier. The value
recommended in Section 6.1.2is 9/8.

kGranularity: Timer granularity. Thisis a system-dependent value, and Section 6.1.2
recommends avalue of 1 ms.

klnitial Rtt: The RTT used before an RTT sampleis taken. The value recommended
in Section 6.2.2is 333 ms.

kPacketNumberSpace: An enum to enumerate the three packet number spaces:

enum kPacket Nunber Space {
Initial,
Handshake,
Appl i cat i onDat a,

}

A.3. Variablesof Interest

Variables required to implement the congestion control mechanisms are described in this section.
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S0
far.

loss_time[kPacketNumberSpace]: The
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the
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packet
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that
packet
number
space
can
be
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lost
based
on
exceeding
the
reordering
window
in
time.
sent_packetq kPacketNumberSpace]: An
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of
packet
numbers
ina
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number
space
to
information
about
them.
Described
in
detail
above
in
Appendix
Al

A.4. Initialization

At the beginning of the connection, initialize the loss detection variables as follows:
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| oss_detection_tiner.reset()

pto_count =0

|atest rtt =0

snoot hed rtt = klnitial Rtt

rttvar = klnitial Rtt / 2

mnrtt =0

first rtt_sanple = 0

for pn_space in [ Initial, Handshake, ApplicationbData ]:
| argest _acked _packet|[pn_space] = infinite
tinme_of last_ack eliciting packet[pn_space] = 0
| oss_tine[pn_space] = 0

A.5. On Sending a Packet

After apacket is sent, information about the packet is stored. The parameters to OnPacketSent are described in
detail abovein Appendix A.1.1.

Pseudocode for OnPacketSent follows:

OnPacket Sent ( packet _nunber, pn_space, ack_eliciting,
in_flight, sent_bytes):
sent _packet s[ pn_space] [ packet _nunber]. packet nunber =
packet numnber
sent _packet s[ pn_space] [ packet _nunber].tine_sent = now()
sent _packet s[ pn_space] [ packet _nunber].ack_eliciting =
ack_eliciting
sent _packet s[ pn_space] [ packet _nunber].in_flight = in_flight
sent _packet s[ pn_space] [ packet _nunber].sent_bytes = sent_bytes
if (in_flight):
if (ack_eliciting):
time_of | ast_ack_eliciting_packet[pn_space] = now()
OnPacket Sent CC(sent _byt es)
Set LossDet ecti onTi ner ()

A.6. On Recelving a Datagram

When a server is blocked by anti-amplification limits, receiving a datagram unblocks it, even if none of the
packets in the datagram are successfully processed. In such a case, the PTO timer will need to be rearmed.

Pseudocode for OnDatagramReceived follows:

OnDat agr anRecei ved( dat agram :
/1 1f this datagram unbl ocks the server, armthe
/1l PTO timer to avoid deadl ock.
if (server was at anti-anplification linmt):
Set LossDet ecti onTi ner ()
if loss _detection_ tiner.tinmout < now():
/1l Execute PTOif it would have expired
/1 while the anplification lint applied.
OnLossDet ecti onTi neout ()

A.7. On Receiving an Acknowledgment

When an ACK frameisreceived, it may newly acknowledge any number of packets.
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Pseudocode for OnAckReceived and UpdateRtt follow:
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lyer

I ncl udesAckEl i citing(packets):
for packet in packets:
i f (packet.ack eliciting):
return true
return fal se

OnAckRecei ved(ack, pn_space):

if (largest _acked packet[pn_space] == infinite):
| ar gest _acked_packet [ pn_space] = ack. | argest acked
el se:

| argest _acked_packet [ pn_space] =
max (| argest acked_packet [ pn_space], ack.|argest_acked)

/1 Detect AndRenpbveAckedPackets finds packets that are newy
/1 acknow edged and renoves them from sent packets.
newl y acked packets =
Det ect AndRenbveAckedPacket s(ack, pn_space)
/1 Nothing to do if there are no newWy acked packets.
if (newly_ acked packets.enpty()):
return

/1l Update the RTT if the |argest acknow edged is newl y acked
/1 and at |east one ack-eliciting was new y acked.
if (newly_acked packets.|argest().packet nunber ==
ack. | argest acked &&
I ncl udesAckEliciting(newl y acked packets)):
|atest rtt =
now() - newly acked packets.largest().tinme_sent
Updat eRt t (ack. ack_del ay)

/1 Process ECN information if present.
if (ACK frane contains ECN i nfornmation):
ProcessECN(ack, pn_space)

| ost _packets = Det ect AndRenbvelost Packet s(pn_space)

if (!lost_packets.enpty()):
OnPacket sLost (| ost _packet s)

OnPacket sAcked(newl y_acked_ packet s)

/!l Reset pto_count unless the client is unsure if
/'l the server has validated the client's address.
i f (PeerConpl et edAddressVal i dation()):

pto_count =0
Set LossDet ecti onTi ner ()

Updat eRt t (ack_del ay):
if (first _rtt_sanple == 0):

mnrtt = latest _rtt
snoothed rtt = latest rtt
rttvar = latest _rtt / 2
first rtt_sanple = now()
return

/1 min_rtt ignores acknow edgnent del ay.

mnrtt = mn(mn_rtt, latest rtt)

/1 Limt ack _delay by max_ack_del ay after handshake
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A.8. Setting the Loss Detection Timer

QUIC loss detection uses asingle timer for all timeout loss detection. The duration of the timer is based on the
timer's mode, which is set in the packet and timer events further below. The function Setl ossDetectionTimer
defined below shows how the single timer is set.

This algorithm may result in the timer being set in the past, particularly if timers wake up late. Timers set in the
past fire immediately.

Pseudocode for SetL ossDetectionTimer follows (where the "' operator represents exponentiation):
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Get LossTi neAndSpace():
time = loss_tine[lnitial]
space = Initial
for pn_space in [ Handshake, ApplicationData ]:
if (time == 0 || loss_time[pn_space] < tine):
tinme = |l oss_tine[pn_space];
space = pn_space
return time, space

Get Pt oTi mreAndSpace() :
duration = (snoothed rtt + max(4 * rttvar, kGanularity))
* (2 N pto_count)
/1 Anti-deadl ock PTO starts fromthe current tine
if (no ack-eliciting packets in flight):
assert (! Peer Conpl et edAddr essVal i dati on())
i f (has handshake keys):
return (now() + duration), Handshake
el se:
return (now() + duration), Initial
pto tinmeout = infinite
pto_space = Initial
for space in [ Initial, Handshake, ApplicationData ]:
if (no ack-eliciting packets in flight in space):
conti nue;
if (space == ApplicationData):
/1 Skip Application Data until handshake confirned.
i f (handshake is not confirned):
return pto_timeout, pto_space
/1 1nclude max_ack_del ay and backoff for Application Data.
duration += nax_ack _delay * (2 ~ pto_count)

t =tine_of last _ack eliciting packet[space] + duration
if (t < pto_tinmeout):
pto tineout =t
pt o_space = space
return pto_timeout, pto_space

Peer Conpl et edAddr essVal i dati on():
/1 Assunme clients validate the server's address inplicitly.
if (endpoint is server):
return true
/1l Servers conpl ete address validati on when a
/1 protected packet is received.
return has received Handshake ACK |
handshake confirned

Set LossDet ecti onTi nmer () :
earliest loss time, _ = GetLossTi neAndSpace()
if (earliest loss tinme != 0):
/1 Time threshold | oss detection
| oss_detection_tinmer.update(earliest |loss_ tine)
return

if (server is at anti-anplification limt):
/1 The server's timer is not set if nothing can be sent.
| oss_detection_tiner.cancel ()
return
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A.9. On Timeout

When the loss detection timer expires, the timer's mode determines the action to be performed.
Pseudocode for OnL ossDetectionTimeout follows:

OnLossDet ecti onTi neout () :
earliest loss tinme, pn_space = GetLossTi meAndSpace()
if (earliest loss tine !=0):
/1 Time threshold | oss Detection
| ost _packets = Det ect AndRenobvelost Packet s(pn_space)
assert (!l ost_packets.enpty())
OnPacket sLost (| ost _packet s)
Set LossDet ecti onTi ner ()
return

if (no ack-eliciting packets in flight):
assert (! Peer Conpl et edAddr essVal i dati on())
/1 Client sends an anti-deadl ock packet: Initial is padded
/1l to earn nore anti-anplification credit,
/1 a Handshake packet proves address ownership.
i f (has Handshake keys):
SendOneAckEl i ci ti ngHandshakePacket ()
el se:
SendOneAckEl i ci ti ngPaddedl ni ti al Packet ()
el se:
/1 PTO Send new data if available, else retransnit old data.
/1 |f neither is available, send a single PING frane.
_, pn_space = Get PtoTi neAndSpace()
SendOneOr TWoAckEl i ci ti ngPacket s(pn_space)

pt o_count ++
Set LossDet ecti onTi ner ()

A.10. Detecting L ost Packets

DetectAndRemovel ostPackets is called every time an ACK isreceived or the time threshold loss detection
timer expires. This function operates on the sent_packets for that packet number space and returns alist of
packets newly detected as lost.

Pseudocode for DetectAndRemovel ostPackets follows:
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Det ect AndRenpvelost Packet s( pn_space) :
assert (|l argest _acked packet[pn_space] != infinite)
| oss_tine[pn_space] = 0
| ost _packets = []
| oss_del ay = kTi neThreshold * max(latest rtt, snoothed rtt)

/1 Mnimumtinme of kGanularity before packets are deened | ost.
| oss_del ay = max(l oss_del ay, kG anularity)

/] Packets sent before this tine are deened | ost.
|l ost_send tinme = now() - |oss_del ay

foreach unacked in sent packets[pn_space]:
i f (unacked. packet nunber > | argest acked_packet[ pn_space]):
conti nue

/1 Mark packet as lost, or set tinme when it shoul d be marked.
/1l Note: The use of kPacket Threshol d here assunes that there
/1 were no sender-induced gaps in the packet nunber space.
if (unacked.tinme_sent <= |lost_send_tine ||
| argest _acked_packet [ pn_space] >=
unacked. packet _nunber + kPacket Threshol d):
sent _packet s[ pn_space] . renove(unacked. packet nunber)
| ost _packets.insert (unacked)

el se:
if (loss_tine[pn_space] == 0):
| oss_tine[pn_space] = unacked.tine_sent + |oss_del ay
el se:

| oss_tine[pn_space] = min(loss_tine[pn_space],
unacked.tine_sent + |oss_del ay)
return | ost packets

A.11. Upon Dropping Initial or Handshake K eys

When Initial or Handshake keys are discarded, packets from the space are discarded and loss detection state is
updated.

Pseudocode for OnPacketNumberSpaceDiscarded follows:

OnPacket Nunmber SpacebDi scar ded( pn_space) :
assert (pn_space != ApplicationDat a)
RemoveFr onByt esl nFl i ght (sent _packet s[ pn_space])
sent _packet s[ pn_space] . cl ear ()
/]l Reset the |loss detection and PTO ti mer
tinme_of last_ack_ eliciting packet[pn_space] =0
| oss_tine[pn_space] =0
pto_count = 0
Set LossDet ecti onTi ner ()
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Appendix B. Congestion Control Pseudocode

We now describe an example implementation of the congestion controller described in Section 7.
The pseudocode segments in this section are licensed as Code Components; see the copyright notice.

B.1. Constantsof Interest

Constants used in congestion control are based on a combination of RFCs, papers, and common practice.

Kkl nitial Window: Default limit on the initial bytesin flight as
described in Section 7.2.

kMinimumwindow: Minimum congestion window in bytes as
described in Section 7.2.

kL ossReductionFactor: Scaling factor applied to reduce the congestion

window when anew loss event is detected.
Section 7 recommends a value of 0.5.

kPersistentCongestionThreshold: Period of time for persistent congestion to be
established, specified as a PTO multiplier.
Section 7.6 recommends avalue of 3.

B.2. Variablesof Interest

Variables required to implement the congestion control mechanisms are described in this section.

max_datagram_size: The sender's current maximum payload
size. This does not include UDP
or IP overhead. The max datagram
sizeis used for congestion window
computations. An endpoint sets the
value of this variable based on its
Path Maximum Transmission Unit
(PMTU; see Section 14.2 of [QUIC-
TRANSPORT]), with aminimum
value of 1200 bytes.

ecn_ce_counters]kPacketNumberSpace]: The highest value reported for the
ECN-CE counter in the packet number
space by the peer in an ACK frame.
Thisvalueis used to detect increasesin
the reported ECN-CE counter.

bytes in flight: The sum of the sizein bytes of all sent
packets that contain at least one ack-
diciting or PADDING frame and have
not been acknowledged or declared
lost. The size does not include IP
or UDP overhead, but does include
the QUIC header and Authenticated
Encryption with Associated Data
(AEAD) overhead. Packets only
containing ACK frames do not count
toward bytes in_flight to ensure
congestion control does not impede
congestion feedback.
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congestion_window: Maximum number of bytes allowed to
beinflight.
congestion_recovery_start_time: The time the current recovery period

started due to the detection of loss or
ECN. When a packet sent after this
time is acknowledged, QUIC exits
congestion recovery.

ssthresh: Slow start threshold in bytes. When
the congestion window is below
ssthresh, the mode is slow start and the
window grows by the number of bytes
acknowledged.

The congestion control pseudocode also accesses some of the variables from the loss recovery pseudocode.

B.3. Initialization

At the beginning of the connection, initialize the congestion control variables as follows:

congesti on_wi ndow = kil niti al W ndow

bytes_in_flight = 0

congestion_recovery_start_tinme =0

ssthresh = infinite

for pn_space in [ Initial, Handshake, ApplicationData ]:
ecn_ce_counters[pn_space] =0

B.4. On Packet Sent

Whenever a packet is sent and it contains non-ACK frames, the packet increases bytes in_flight.

OnPacket Sent CC(sent byt es):
bytes in flight += sent_bytes

B.5. On Packet Acknowledgment

Thisisinvoked from loss detection's OnAckReceived and is supplied with the newly acked packets from
sent_packets.

In congestion avoidance, implementers that use an integer representation for congestion_window should be
careful with division and can use the alternative approach suggested in Section 2.1 of [RFC3465].
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I nCongest i onRecovery(sent _tine):
return sent _tinme <= congestion_recovery start _tinme

OnPacket sAcked(acked packets):
for acked packet in acked packets:
OnPacket Acked( acked_packet)

OnPacket Acked(acked_packet):
if (lacked _packet.in_flight):

return;
/1 Renove frombytes in_flight.
bytes in flight -= acked packet.sent bytes
/1 Do not increase congestion_w ndow if application
/1l limted or flow control |imted.
if (1sAppOFl owControl Limted())
return

/1 Do not increase congestion wi ndow in recovery period.
i f (I nCongestionRecovery(acked packet.tine_sent)):
return
i f (congestion_w ndow < ssthresh):
/1 Slow start.
congesti on_wi ndow += acked_ packet.sent bytes
el se:
/1 Congestion avoi dance.
congesti on_wi ndow +=
max_dat agram si ze * acked_packet.sent _bytes
/ congestion_w ndow

B.6. On New Congestion Event

Thisisinvoked from ProcessECN and OnPacketsL ost when a new congestion event is detected. If not

aready in recovery, this starts arecovery period and reduces the slow start threshold and congestion window
immediately.

OnCongesti onEvent (sent _tine):
/1 No reaction if already in a recovery peri od.
i f (InCongestionRecovery(sent _tine)):
return

/1l Enter recovery period.

congestion_recovery start_tinme = now()

ssthresh = congesti on_wi ndow * kLossReducti onFact or
congesti on_wi ndow = nmax(ssthresh, kM ni numN ndow)
/1 A packet can be sent to speed up | oss recovery.
MaybeSendOnePacket ()

B.7. Process ECN Information

Thisisinvoked when an ACK frame with an ECN section is received from the peer.
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ProcesseCN(ack, pn_space):
/1 1f the ECN-CE counter reported by the peer has increased,
/1 this could be a new congestion event.
if (ack.ce_counter > ecn_ce_counters[pn_space]):
ecn_ce_counters[ pn_space] = ack.ce_counter
sent _tinme = sent_packets[ack.|argest acked].tinme_sent
OnCongesti onEvent (sent _ti ne)

B.8. On Packets L ost
Thisisinvoked when DetectAndRemovel ostPackets deems packets | ost.

OnPacket sLost (| ost _packets):
sent _time_of last loss =0
/'l Renove | ost packets frombytes_in_flight.
for |ost_packet in |ost_packets:
if |ost_packet.in_flight:
bytes in flight -= 1ost_packet.sent bytes
sent _time_of last |loss =
max(sent _tinme_of |ast _|oss, |ost _packet.tinme_sent)
/1l Congestion event if in-flight packets were | ost
if (sent _tinme_of last loss != 0):
OnCongesti onEvent (sent _tinme_of | ast | o0ss)

/1 Reset the congestion windowif the |loss of these
/1 packets indicates persistent congestion
/1 Only consider packets sent after getting an RTT sanple.
if (first _rtt_sanple == 0):
return
pc_lost =[]
for lost in | ost_packets:
if lost.tine_sent > first _rtt_sanple:
pc_lost.insert(lost)
i f (InPersistentCongestion(pc_lost)):
congesti on_wi ndow = kM ni numA ndow
congestion_recovery start _tine =0

B.9. Removing Discarded Packets from Bytesin Flight
When Initial or Handshake keys are discarded, packets sent in that space no longer count toward bytesin flight.
Pseudocode for RemoveFromBytesinFlight follows:

RemoveFr onByt esl nFl i ght (di scarded_packet s):
/'l Rermove any unacknow edged packets from flight.
foreach packet in discarded_packets:
i f packet.in_flight
bytes_in_flight -= size
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