
Internet Engineering Task Force (IETF) R. Fielding, EditorRequest for Comments: 7230 AdobeObsoletes: 2145, 2616 J. Reschke, EditorUpdates: 2817, 2818 greenbytesCategory: Standards Track June 2014ISSN: 2070-1721
Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocolfor distributed, collaborative, hypertext information systems. This documentprovides an overview of HTTP architecture and its associated terminology,defines the "http" and "https" Uniform Resource Identifier (URI) schemes,defines the HTTP/1.1 message syntax and parsing requirements, and describesrelated security concerns for implementations.
Status of This Memo

This is an Internet Standards Track document.This document is a product of the Internet Engineering Task Force (IETF). Itrepresents the consensus of the IETF community. It has received public reviewand has been approved for publication by the Internet Engineering SteeringGroup (IESG). Further information on Internet Standards is available in Section2 of RFC 5741.Information about the current status of this document, any errata, and how toprovide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7230.
Copyright Notice

Copyright © 2014 IETF Trust and the persons identified as the documentauthors. All rights reserved.This document is subject to BCP 78 and the IETF Trust's Legal ProvisionsRelating to IETF Documents (http://trustee.ietf.org/license-info) in effect onthe date of publication of this document. Please review these documents
Fielding & Reschke Standards Track [Page 1]

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://tools.ietf.org/html/rfc2145
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2817
https://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/info/rfc7230
http://www.rfc-editor.org/info/rfc7230
http://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with respect to thisdocument. Code Components extracted from this document must includeSimplified BSD License text as described in Section 4.e of the Trust LegalProvisions and are provided without warranty as described in the SimplifiedBSD License.This document may contain material from IETF Documents or IETFContributions published or made publicly available before November 10, 2008.The person(s) controlling the copyright in some of this material may not havegranted the IETF Trust the right to allow modifications of such material outsidethe IETF Standards Process. Without obtaining an adequate license from theperson(s) controlling the copyright in such materials, this document may not bemodified outside the IETF Standards Process, and derivative works of it maynot be created outside the IETF Standards Process, except to format it forpublication as an RFC or to translate it into languages other than English.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 2]

Table of Contents

1. Introduction1.1 Requirements Notation ... 71.2 Syntax Notation... 7
2. Architecture2.1 Client/Server Messaging... 82.2 Implementation Diversity .. 92.3 Intermediaries...102.4 Caches ...122.5 Conformance and Error Handling...132.6 Protocol Versioning ...142.7 Uniform Resource Identifiers2.7.1 http URI Scheme ..172.7.2 https URI Scheme ..192.7.3 http and https URI Normalization and Comparison ..20
3. Message Format3.1 Start Line3.1.1 Request Line..223.1.2 Status Line..233.2 Header Fields3.2.1 Field Extensibility ...243.2.2 Field Order ...243.2.3 Whitespace...253.2.4 Field Parsing..253.2.5 Field Limits ..273.2.6 Field Value Components...273.3 Message Body3.3.1 Transfer-Encoding ..283.3.2 Content-Length ..303.3.3 Message Body Length..323.4 Handling Incomplete Messages..343.5 Message Parsing Robustness ..34
4. Transfer Codings4.1 Chunked Transfer Coding4.1.1 Chunk Extensions..364.1.2 Chunked Trailer Part..374.1.3 Decoding Chunked..374.2 Compression Codings4.2.1 Compress Coding...384.2.2 Deflate Coding...384.2.3 Gzip Coding ..384.3 TE ..394.4 Trailer..40

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 3]

5. Message Routing5.1 Identifying a Target Resource ...405.2 Connecting Inbound..405.3 Request Target5.3.1 origin-form...415.3.2 absolute-form ...425.3.3 authority-form..425.3.4 asterisk-form...435.4 Host ..435.5 Effective Request URI ...445.6 Associating a Response to a Request ...465.7 Message Forwarding5.7.1 Via ..475.7.2 Transformations ..48
6. Connection Management6.1 Connection ..506.2 Establishment ..526.3 Persistence6.3.1 Retrying Requests ...536.3.2 Pipelining..536.4 Concurrency ...546.5 Failures and Timeouts..546.6 Tear-down ...556.7 Upgrade ..56
7. ABNF List Extension: #rule ..58
8. IANA Considerations8.1 Header Field Registration...598.2 URI Scheme Registration ..608.3 Internet Media Type Registration8.3.1 Internet Media Type message/http...618.3.2 Internet Media Type application/http ...628.4 Transfer Coding Registry8.4.1 Procedure ...648.4.2 Registration ...658.5 Content Coding Registration ...658.6 Upgrade Token Registry8.6.1 Procedure ...668.6.2 Upgrade Token Registration...66
9. Security Considerations9.1 Establishing Authority ...679.2 Risks of Intermediaries..679.3 Attacks via Protocol Element Length...689.4 Response Splitting ...689.5 Request Smuggling ..699.6 Message Integrity ...709.7 Message Confidentiality ..709.8 Privacy of Server Log Information..70

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 4]

10. Acknowledgments.. 71
11. References11.1 Normative References ...7311.2 Informative References...74
A. HTTP Version HistoryA.1 Changes from HTTP/1.0A.1.1 Multihomed Web Servers ..76A.1.2 Keep-Alive Connections ...77A.1.3 Introduction of Transfer-Encoding ...78A.2 Changes from RFC 2616..78
B. Collected ABNF .. 81
Index.. 84
Authors' Addresses... 89

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 5]

1. Introduction

The Hypertext Transfer Protocol (HTTP) is a stateless application-levelrequest/response protocol that uses extensible semantics and self-descriptivemessage payloads for flexible interaction with network-based hypertextinformation systems. This document is the first in a series of documents thatcollectively form the HTTP/1.1 specification:1. "Message Syntax and Routing" (this document)2. "Semantics and Content" [RFC7231]3. "Conditional Requests" [RFC7232]4. "Range Requests" [RFC7233]5. "Caching" [RFC7234]6. "Authentication" [RFC7235]This HTTP/1.1 specification obsoletes RFC 2616 and RFC 2145 (on HTTPversioning). This specification also updates the use of CONNECT to establish atunnel, previously defined in RFC 2817, and defines the "https" URI scheme thatwas described informally in RFC 2818.HTTP is a generic interface protocol for information systems. It is designed tohide the details of how a service is implemented by presenting a uniforminterface to clients that is independent of the types of resources provided.Likewise, servers do not need to be aware of each client's purpose: an HTTPrequest can be considered in isolation rather than being associated with aspecific type of client or a predetermined sequence of application steps. Theresult is a protocol that can be used effectively in many different contexts andfor which implementations can evolve independently over time.HTTP is also designed for use as an intermediation protocol for translatingcommunication to and from non-HTTP information systems. HTTP proxies andgateways can provide access to alternative information services by translatingtheir diverse protocols into a hypertext format that can be viewed andmanipulated by clients in the same way as HTTP services.One consequence of this flexibility is that the protocol cannot be defined interms of what occurs behind the interface. Instead, we are limited to definingthe syntax of communication, the intent of received communication, and theexpected behavior of recipients. If the communication is considered in isolation,then successful actions ought to be reflected in corresponding changes to theobservable interface provided by servers. However, since multiple clients mightact in parallel and perhaps at cross-purposes, we cannot require that suchchanges be observable beyond the scope of a single response.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 6]

This document describes the architectural elements that are used or referred toin HTTP, defines the "http" and "https" URI schemes, describes overall networkoperation and connection management, and defines HTTP message framing andforwarding requirements. Our goal is to define all of the mechanisms necessaryfor HTTP message handling that are independent of message semantics,thereby defining the complete set of requirements for message parsers andmessage-forwarding intermediaries.
1.1 Requirements NotationThe key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in thisdocument are to be interpreted as described in [RFC2119].Conformance criteria and considerations regarding error handling are definedin Section 2.5.
1.2 Syntax NotationThis specification uses the Augmented Backus-Naur Form (ABNF) notation of[RFC5234] with a list extension, defined in Section 7, that allows for compactdefinition of comma-separated lists using a '#' operator (similar to how the '*'operator indicates repetition). Appendix B shows the collected grammar withall list operators expanded to standard ABNF notation.The following core rules are included by reference, as defined in [RFC5234],Appendix B.1: ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL(controls), DIGIT (decimal 0-9), DQUOTE (double quote), HEXDIG (hexadecimal0-9/A-F/a-f), HTAB (horizontal tab), LF (line feed), OCTET (any 8-bit sequenceof data), SP (space), and VCHAR (any visible [USASCII] character).As a convention, ABNF rule names prefixed with "obs-" denote "obsolete"grammar rules that appear for historical reasons.
2. Architecture

HTTP was created for the World Wide Web (WWW) architecture and hasevolved over time to support the scalability needs of a worldwide hypertextsystem. Much of that architecture is reflected in the terminology and syntaxproductions used to define HTTP.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 7]

https://tools.ietf.org/html/rfc5234#appendix-B.1

2.1 Client/Server MessagingHTTP is a stateless request/response protocol that operates by exchanging
messages (Section 3) across a reliable transport- or session-layer "connection"(Section 6). An HTTP "client" is a program that establishes a connection to aserver for the purpose of sending one or more HTTP requests. An HTTP "server"is a program that accepts connections in order to service HTTP requests bysending HTTP responses.The terms "client" and "server" refer only to the roles that these programsperform for a particular connection. The same program might act as a client onsome connections and a server on others. The term "user agent" refers to any ofthe various client programs that initiate a request, including (but not limited to)browsers, spiders (web-based robots), command-line tools, customapplications, and mobile apps. The term "origin server" refers to the programthat can originate authoritative responses for a given target resource. The terms"sender" and "recipient" refer to any implementation that sends or receives agiven message, respectively.HTTP relies upon the Uniform Resource Identifier (URI) standard [RFC3986] toindicate the target resource (Section 5.1) and relationships between resources.Messages are passed in a format similar to that used by Internet mail[RFC5322] and the Multipurpose Internet Mail Extensions (MIME) [RFC2045](see Appendix A of [RFC7231] for the differences between HTTP and MIMEmessages).Most HTTP communication consists of a retrieval request (GET) for arepresentation of some resource identified by a URI. In the simplest case, thismight be accomplished via a single bidirectional connection (===) between theuser agent (UA) and the origin server (O).

request >
UA ======================================= O

< response

A client sends an HTTP request to a server in the form of a request message,beginning with a request-line that includes a method, URI, and protocol version(Section 3.1.1), followed by header fields containing request modifiers, clientinformation, and representation metadata (Section 3.2), an empty line toindicate the end of the header section, and finally a message body containingthe payload body (if any, Section 3.3).

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 8]

rfc7231.html#differences.between.http.and.mime

A server responds to a client's request by sending one or more HTTP responsemessages, each beginning with a status line that includes the protocol version, asuccess or error code, and textual reason phrase (Section 3.1.2), possiblyfollowed by header fields containing server information, resource metadata,and representation metadata (Section 3.2), an empty line to indicate the end ofthe header section, and finally a message body containing the payload body (ifany, Section 3.3).A connection might be used for multiple request/response exchanges, asdefined in Section 6.3.The following example illustrates a typical message exchange for a GET request(Section 4.3.1 of [RFC7231]) on the URI "http://www.example.com/hello.txt":Client request:
GET /hello.txt HTTP/1.1
User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
Host: www.example.com
Accept-Language: en, mi

Server response:
HTTP/1.1 200 OK
Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache
Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"
Accept-Ranges: bytes
Content-Length: 51
Vary: Accept-Encoding
Content-Type: text/plain

Hello World! My payload includes a trailing CRLF.

2.2 Implementation DiversityWhen considering the design of HTTP, it is easy to fall into a trap of thinkingthat all user agents are general-purpose browsers and all origin servers arelarge public websites. That is not the case in practice. Common HTTP useragents include household appliances, stereos, scales, firmware update scripts,command-line programs, mobile apps, and communication devices in amultitude of shapes and sizes. Likewise, common HTTP origin servers includehome automation units, configurable networking components, office machines,

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 9]

rfc7231.html#GET

autonomous robots, news feeds, traffic cameras, ad selectors, and video-delivery platforms.The term "user agent" does not imply that there is a human user directlyinteracting with the software agent at the time of a request. In many cases, auser agent is installed or configured to run in the background and save itsresults for later inspection (or save only a subset of those results that might beinteresting or erroneous). Spiders, for example, are typically given a start URIand configured to follow certain behavior while crawling the Web as a hypertextgraph.The implementation diversity of HTTP means that not all user agents can makeinteractive suggestions to their user or provide adequate warning for securityor privacy concerns. In the few cases where this specification requires reportingof errors to the user, it is acceptable for such reporting to only be observable inan error console or log file. Likewise, requirements that an automated action beconfirmed by the user before proceeding might be met via advanceconfiguration choices, run-time options, or simple avoidance of the unsafeaction; confirmation does not imply any specific user interface or interruptionof normal processing if the user has already made that choice.
2.3 IntermediariesHTTP enables the use of intermediaries to satisfy requests through a chain ofconnections. There are three common forms of HTTP intermediary: proxy,gateway, and tunnel. In some cases, a single intermediary might act as an originserver, proxy, gateway, or tunnel, switching behavior based on the nature ofeach request.

> > > >
UA =========== A =========== B =========== C =========== O

< < < <

The figure above shows three intermediaries (A, B, and C) between the useragent and origin server. A request or response message that travels the wholechain will pass through four separate connections. Some HTTP communicationoptions might apply only to the connection with the nearest, non-tunnelneighbor, only to the endpoints of the chain, or to all connections along thechain. Although the diagram is linear, each participant might be engaged inmultiple, simultaneous communications. For example, B might be receivingrequests from many clients other than A, and/or forwarding requests to serversother than C, at the same time that it is handling A's request. Likewise, later

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 10]

requests might be sent through a different path of connections, often based ondynamic configuration for load balancing.The terms "upstream" and "downstream" are used to describe directionalrequirements in relation to the message flow: all messages flow from upstreamto downstream. The terms "inbound" and "outbound" are used to describedirectional requirements in relation to the request route: "inbound" meanstoward the origin server and "outbound" means toward the user agent.A "proxy" is a message-forwarding agent that is selected by the client, usuallyvia local configuration rules, to receive requests for some type(s) of absoluteURI and attempt to satisfy those requests via translation through the HTTPinterface. Some translations are minimal, such as for proxy requests for "http"URIs, whereas other requests might require translation to and from entirelydifferent application-level protocols. Proxies are often used to group anorganization's HTTP requests through a common intermediary for the sake ofsecurity, annotation services, or shared caching. Some proxies are designed toapply transformations to selected messages or payloads while they are beingforwarded, as described in Section 5.7.2.A "gateway" (a.k.a. "reverse proxy") is an intermediary that acts as an originserver for the outbound connection but translates received requests andforwards them inbound to another server or servers. Gateways are often usedto encapsulate legacy or untrusted information services, to improve serverperformance through "accelerator" caching, and to enable partitioning or loadbalancing of HTTP services across multiple machines.All HTTP requirements applicable to an origin server also apply to theoutbound communication of a gateway. A gateway communicates with inboundservers using any protocol that it desires, including private extensions to HTTPthat are outside the scope of this specification. However, an HTTP-to-HTTPgateway that wishes to interoperate with third-party HTTP servers ought toconform to user agent requirements on the gateway's inbound connection.A "tunnel" acts as a blind relay between two connections without changing themessages. Once active, a tunnel is not considered a party to the HTTPcommunication, though the tunnel might have been initiated by an HTTPrequest. A tunnel ceases to exist when both ends of the relayed connection areclosed. Tunnels are used to extend a virtual connection through anintermediary, such as when Transport Layer Security (TLS, [RFC5246]) is usedto establish confidential communication through a shared firewall proxy.The above categories for intermediary only consider those acting asparticipants in the HTTP communication. There are also intermediaries thatcan act on lower layers of the network protocol stack, filtering or redirecting

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 11]

HTTP traffic without the knowledge or permission of message senders.Network intermediaries are indistinguishable (at a protocol level) from a man-in-the-middle attack, often introducing security flaws or interoperabilityproblems due to mistakenly violating HTTP semantics.For example, an "interception proxy" [RFC3040] (also commonly known as a"transparent proxy" [RFC1919] or "captive portal") differs from an HTTP proxybecause it is not selected by the client. Instead, an interception proxy filters orredirects outgoing TCP port 80 packets (and occasionally other common porttraffic). Interception proxies are commonly found on public network accesspoints, as a means of enforcing account subscription prior to allowing use ofnon-local Internet services, and within corporate firewalls to enforce networkusage policies.HTTP is defined as a stateless protocol, meaning that each request message canbe understood in isolation. Many implementations depend on HTTP's statelessdesign in order to reuse proxied connections or dynamically load balancerequests across multiple servers. Hence, a server must not assume that tworequests on the same connection are from the same user agent unless theconnection is secured and specific to that agent. Some non-standard HTTPextensions (e.g., [RFC4559]) have been known to violate this requirement,resulting in security and interoperability problems.
2.4 CachesA "cache" is a local store of previous response messages and the subsystem thatcontrols its message storage, retrieval, and deletion. A cache stores cacheableresponses in order to reduce the response time and network bandwidthconsumption on future, equivalent requests. Any client or server may employ acache, though a cache cannot be used by a server while it is acting as a tunnel.The effect of a cache is that the request/response chain is shortened if one ofthe participants along the chain has a cached response applicable to thatrequest. The following illustrates the resulting chain if B has a cached copy of anearlier response from O (via C) for a request that has not been cached by UA orA.

> >
UA =========== A =========== B - - - - - - C - - - - - - O

< <

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 12]

A response is "cacheable" if a cache is allowed to store a copy of the responsemessage for use in answering subsequent requests. Even when a response iscacheable, there might be additional constraints placed by the client or by theorigin server on when that cached response can be used for a particularrequest. HTTP requirements for cache behavior and cacheable responses aredefined in Section 2 of [RFC7234].There is a wide variety of architectures and configurations of caches deployedacross the World Wide Web and inside large organizations. These includenational hierarchies of proxy caches to save transoceanic bandwidth,collaborative systems that broadcast or multicast cache entries, archives of pre-fetched cache entries for use in off-line or high-latency environments, and soon.
2.5 Conformance and Error HandlingThis specification targets conformance criteria according to the role of aparticipant in HTTP communication. Hence, HTTP requirements are placed onsenders, recipients, clients, servers, user agents, intermediaries, origin servers,proxies, gateways, or caches, depending on what behavior is being constrainedby the requirement. Additional (social) requirements are placed onimplementations, resource owners, and protocol element registrations whenthey apply beyond the scope of a single communication.The verb "generate" is used instead of "send" where a requirementdifferentiates between creating a protocol element and merely forwarding areceived element downstream.An implementation is considered conformant if it complies with all of therequirements associated with the roles it partakes in HTTP.Conformance includes both the syntax and semantics of protocol elements. Asender must not generate protocol elements that convey a meaning that isknown by that sender to be false. A sender must not generate protocolelements that do not match the grammar defined by the corresponding ABNFrules. Within a given message, a sender must not generate protocol elementsor syntax alternatives that are only allowed to be generated by participants inother roles (i.e., a role that the sender does not have for that message).When a received protocol element is parsed, the recipient must be able to parseany value of reasonable length that is applicable to the recipient's role and thatmatches the grammar defined by the corresponding ABNF rules. Note, however,that some received protocol elements might not be parsed. For example, anintermediary forwarding a message might parse a header-field into generic

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 13]

rfc7234.html#caching.overview

field-name and field-value components, but then forward the header fieldwithout further parsing inside the field-value.HTTP does not have specific length limitations for many of its protocolelements because the lengths that might be appropriate will vary widely,depending on the deployment context and purpose of the implementation.Hence, interoperability between senders and recipients depends on sharedexpectations regarding what is a reasonable length for each protocol element.Furthermore, what is commonly understood to be a reasonable length for someprotocol elements has changed over the course of the past two decades of HTTPuse and is expected to continue changing in the future.At a minimum, a recipient must be able to parse and process protocol elementlengths that are at least as long as the values that it generates for those sameprotocol elements in other messages. For example, an origin server thatpublishes very long URI references to its own resources needs to be able toparse and process those same references when received as a request target.A recipient must interpret a received protocol element according to thesemantics defined for it by this specification, including extensions to thisspecification, unless the recipient has determined (through experience orconfiguration) that the sender incorrectly implements what is implied by thosesemantics. For example, an origin server might disregard the contents of areceived Accept-Encoding header field if inspection of the User-Agent headerfield indicates a specific implementation version that is known to fail on receiptof certain content codings.Unless noted otherwise, a recipient may attempt to recover a usable protocolelement from an invalid construct. HTTP does not define specific error handlingmechanisms except when they have a direct impact on security, since differentapplications of the protocol require different error handling strategies. Forexample, a Web browser might wish to transparently recover from a responsewhere the Location header field doesn't parse according to the ABNF, whereas asystems control client might consider any form of error recovery to bedangerous.
2.6 Protocol VersioningHTTP uses a "<major>.<minor>" numbering scheme to indicate versions of theprotocol. This specification defines version "1.1". The protocol version as awhole indicates the sender's conformance with the set of requirements laid outin that version's corresponding specification of HTTP.The version of an HTTP message is indicated by an HTTP-version field in thefirst line of the message. HTTP-version is case-sensitive.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 14]

rfc7231.html#header.accept-encoding
rfc7231.html#header.user-agent
rfc7231.html#header.location

HTTP-version = HTTP-name "/" DIGIT "." DIGIT
HTTP-name = %x48.54.54.50 ; "HTTP", case-sensitiveThe HTTP version number consists of two decimal digits separated by a "."(period or decimal point). The first digit ("major version") indicates the HTTPmessaging syntax, whereas the second digit ("minor version") indicates thehighest minor version within that major version to which the sender isconformant and able to understand for future communication. The minorversion advertises the sender's communication capabilities even when thesender is only using a backwards-compatible subset of the protocol, therebyletting the recipient know that more advanced features can be used in response(by servers) or in future requests (by clients).When an HTTP/1.1 message is sent to an HTTP/1.0 recipient [RFC1945] or arecipient whose version is unknown, the HTTP/1.1 message is constructed suchthat it can be interpreted as a valid HTTP/1.0 message if all of the newerfeatures are ignored. This specification places recipient-version requirementson some new features so that a conformant sender will only use compatiblefeatures until it has determined, through configuration or the receipt of amessage, that the recipient supports HTTP/1.1.The interpretation of a header field does not change between minor versions ofthe same major HTTP version, though the default behavior of a recipient in theabsence of such a field can change. Unless specified otherwise, header fieldsdefined in HTTP/1.1 are defined for all versions of HTTP/1.x. In particular, theHost and Connection header fields ought to be implemented by all HTTP/1.ximplementations whether or not they advertise conformance with HTTP/1.1.New header fields can be introduced without changing the protocol version iftheir defined semantics allow them to be safely ignored by recipients that donot recognize them. Header field extensibility is discussed in Section 3.2.1.Intermediaries that process HTTP messages (i.e., all intermediaries other thanthose acting as tunnels) must send their own HTTP-version in forwardedmessages. In other words, they are not allowed to blindly forward the first lineof an HTTP message without ensuring that the protocol version in that messagematches a version to which that intermediary is conformant for both thereceiving and sending of messages. Forwarding an HTTP message withoutrewriting the HTTP-version might result in communication errors whendownstream recipients use the message sender's version to determine whatfeatures are safe to use for later communication with that sender.A client should send a request version equal to the highest version to which theclient is conformant and whose major version is no higher than the highest

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 15]

version supported by the server, if this is known. A client must not send aversion to which it is not conformant.A client may send a lower request version if it is known that the serverincorrectly implements the HTTP specification, but only after the client hasattempted at least one normal request and determined from the responsestatus code or header fields (e.g., Server) that the server improperly handleshigher request versions.A server should send a response version equal to the highest version to whichthe server is conformant that has a major version less than or equal to the onereceived in the request. A server must not send a version to which it is notconformant. A server can send a 505 (HTTP Version Not Supported) response ifit wishes, for any reason, to refuse service of the client's major protocolversion.A server may send an HTTP/1.0 response to a request if it is known orsuspected that the client incorrectly implements the HTTP specification and isincapable of correctly processing later version responses, such as when a clientfails to parse the version number correctly or when an intermediary is knownto blindly forward the HTTP-version even when it doesn't conform to the givenminor version of the protocol. Such protocol downgrades should not beperformed unless triggered by specific client attributes, such as when one ormore of the request header fields (e.g., User-Agent) uniquely match the valuessent by a client known to be in error.The intention of HTTP's versioning design is that the major number will only beincremented if an incompatible message syntax is introduced, and that theminor number will only be incremented when changes made to the protocolhave the effect of adding to the message semantics or implying additionalcapabilities of the sender. However, the minor version was not incremented forthe changes introduced between [RFC2068] and [RFC2616], and this revisionhas specifically avoided any such changes to the protocol.When an HTTP message is received with a major version number that therecipient implements, but a higher minor version number than what therecipient implements, the recipient should process the message as if it were inthe highest minor version within that major version to which the recipient isconformant. A recipient can assume that a message with a higher minorversion, when sent to a recipient that has not yet indicated support for thathigher version, is sufficiently backwards-compatible to be safely processed byany implementation of the same major version.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 16]

rfc7231.html#header.server
rfc7231.html#status.505
rfc7231.html#header.user-agent

2.7 Uniform Resource IdentifiersUniform Resource Identifiers (URIs) [RFC3986] are used throughout HTTP asthe means for identifying resources (Section 2 of [RFC7231]). URI referencesare used to target requests, indicate redirects, and define relationships.The definitions of "URI-reference", "absolute-URI", "relative-part", "scheme","authority", "port", "host", "path-abempty", "segment", "query", and "fragment"are adopted from the URI generic syntax. An "absolute-path" rule is defined forprotocol elements that can contain a non-empty path component. (This rulediffers slightly from the path-abempty rule of RFC 3986, which allows for anempty path to be used in references, and path-absolute rule, which does notallow paths that begin with "//".) A "partial-URI" rule is defined for protocolelements that can contain a relative URI but not a fragment component.
URI-reference = <URI-reference, see [RFC3986], Section 4.1>
absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>
relative-part = <relative-part, see [RFC3986], Section 4.2>
scheme = <scheme, see [RFC3986], Section 3.1>
authority = <authority, see [RFC3986], Section 3.2>
uri-host = <host, see [RFC3986], Section 3.2.2>
port = <port, see [RFC3986], Section 3.2.3>
path-abempty = <path-abempty, see [RFC3986], Section 3.3>
segment = <segment, see [RFC3986], Section 3.3>
query = <query, see [RFC3986], Section 3.4>
fragment = <fragment, see [RFC3986], Section 3.5>

absolute-path = 1*("/" segment)
partial-URI = relative-part ["?" query]Each protocol element in HTTP that allows a URI reference will indicate in itsABNF production whether the element allows any form of reference (URI-reference), only a URI in absolute form (absolute-URI), only the path andoptional query components, or some combination of the above. Unlessotherwise indicated, URI references are parsed relative to the effective requestURI (Section 5.5).

2.7.1 http URI SchemeThe "http" URI scheme is hereby defined for the purpose of minting identifiersaccording to their association with the hierarchical namespace governed by apotential HTTP origin server listening for TCP ([RFC0793]) connections on agiven port.
http-URI = "http:" "//" authority path-abempty ["?" query]

["#" fragment]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 17]

rfc7231.html#resources
https://tools.ietf.org/html/rfc3986#section-4.1
https://tools.ietf.org/html/rfc3986#section-4.3
https://tools.ietf.org/html/rfc3986#section-4.2
https://tools.ietf.org/html/rfc3986#section-3.1
https://tools.ietf.org/html/rfc3986#section-3.2
https://tools.ietf.org/html/rfc3986#section-3.2.2
https://tools.ietf.org/html/rfc3986#section-3.2.3
https://tools.ietf.org/html/rfc3986#section-3.3
https://tools.ietf.org/html/rfc3986#section-3.3
https://tools.ietf.org/html/rfc3986#section-3.4
https://tools.ietf.org/html/rfc3986#section-3.5

The origin server for an "http" URI is identified by the authority component,which includes a host identifier and optional TCP port ([RFC3986], Section3.2.2). The hierarchical path component and optional query component serveas an identifier for a potential target resource within that origin server's namespace. The optional fragment component allows for indirect identification of asecondary resource, independent of the URI scheme, as defined in Section 3.5 of[RFC3986].A sender must not generate an "http" URI with an empty host identifier. Arecipient that processes such a URI reference must reject it as invalid.If the host identifier is provided as an IP address, the origin server is thelistener (if any) on the indicated TCP port at that IP address. If host is aregistered name, the registered name is an indirect identifier for use with aname resolution service, such as DNS, to find an address for that origin server. Ifthe port subcomponent is empty or not given, TCP port 80 (the reserved portfor WWW services) is the default.Note that the presence of a URI with a given authority component does notimply that there is always an HTTP server listening for connections on that hostand port. Anyone can mint a URI. What the authority component determines iswho has the right to respond authoritatively to requests that target theidentified resource. The delegated nature of registered names and IP addressescreates a federated namespace, based on control over the indicated host andport, whether or not an HTTP server is present. See Section 9.1 for securityconsiderations related to establishing authority.When an "http" URI is used within a context that calls for access to the indicatedresource, a client may attempt access by resolving the host to an IP address,establishing a TCP connection to that address on the indicated port, andsending an HTTP request message (Section 3) containing the URI's identifyingdata (Section 5) to the server. If the server responds to that request with a non-interim HTTP response message, as described in Section 6 of [RFC7231], thenthat response is considered an authoritative answer to the client's request.Although HTTP is independent of the transport protocol, the "http" scheme isspecific to TCP-based services because the name delegation process depends onTCP for establishing authority. An HTTP service based on some otherunderlying connection protocol would presumably be identified using adifferent URI scheme, just as the "https" scheme (below) is used for resourcesthat require an end-to-end secured connection. Other protocols might also beused to provide access to "http" identified resources — it is only theauthoritative interface that is specific to TCP.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 18]

https://tools.ietf.org/html/rfc3986#section-3.2.2
https://tools.ietf.org/html/rfc3986#section-3.2.2
https://tools.ietf.org/html/rfc3986#section-3.5
rfc7231.html#status.codes

The URI generic syntax for authority also includes a deprecated userinfosubcomponent ([RFC3986], Section 3.2.1) for including user authenticationinformation in the URI. Some implementations make use of the userinfocomponent for internal configuration of authentication information, such aswithin command invocation options, configuration files, or bookmark lists, eventhough such usage might expose a user identifier or password. A sender mustnot generate the userinfo subcomponent (and its "@" delimiter) when an"http" URI reference is generated within a message as a request target orheader field value. Before making use of an "http" URI reference received froman untrusted source, a recipient should parse for userinfo and treat itspresence as an error; it is likely being used to obscure the authority for the sakeof phishing attacks.
2.7.2 https URI SchemeThe "https" URI scheme is hereby defined for the purpose of minting identifiersaccording to their association with the hierarchical namespace governed by apotential HTTP origin server listening to a given TCP port for TLS-securedconnections ([RFC5246]).All of the requirements listed above for the "http" scheme are also requirementsfor the "https" scheme, except that TCP port 443 is the default if the portsubcomponent is empty or not given, and the user agent must ensure that itsconnection to the origin server is secured through the use of strong encryption,end-to-end, prior to sending the first HTTP request.

https-URI = "https:" "//" authority path-abempty ["?" query]
["#" fragment]Note that the "https" URI scheme depends on both TLS and TCP for establishingauthority. Resources made available via the "https" scheme have no sharedidentity with the "http" scheme even if their resource identifiers indicate thesame authority (the same host listening to the same TCP port). They are distinctnamespaces and are considered to be distinct origin servers. However, anextension to HTTP that is defined to apply to entire host domains, such as theCookie protocol [RFC6265], can allow information set by one service to impactcommunication with other services within a matching group of host domains.The process for authoritative access to an "https" identified resource is definedin [RFC2818].

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 19]

https://tools.ietf.org/html/rfc3986#section-3.2.1

2.7.3 http and https URI Normalization and ComparisonSince the "http" and "https" schemes conform to the URI generic syntax, suchURIs are normalized and compared according to the algorithm defined inSection 6 of [RFC3986], using the defaults described above for each scheme.If the port is equal to the default port for a scheme, the normal form is to omitthe port subcomponent. When not being used in absolute form as the requesttarget of an OPTIONS request, an empty path component is equivalent to anabsolute path of "/", so the normal form is to provide a path of "/" instead. Thescheme and host are case-insensitive and normally provided in lowercase; allother components are compared in a case-sensitive manner. Characters otherthan those in the "reserved" set are equivalent to their percent-encoded octets:the normal form is to not encode them (see Sections 2.1 and 2.2 of[RFC3986]).For example, the following three URIs are equivalent:
http://example.com:80/~smith/home.html
http://EXAMPLE.com/%7Esmith/home.html
http://EXAMPLE.com:/%7esmith/home.html

3. Message Format

All HTTP/1.1 messages consist of a start-line followed by a sequence of octetsin a format similar to the Internet Message Format [RFC5322]: zero or moreheader fields (collectively referred to as the "headers" or the "header section"),an empty line indicating the end of the header section, and an optional messagebody.
HTTP-message = start-line

*(header-field CRLF)
CRLF
[message-body]The normal procedure for parsing an HTTP message is to read the start-lineinto a structure, read each header field into a hash table by field name until theempty line, and then use the parsed data to determine if a message body isexpected. If a message body has been indicated, then it is read as a stream untilan amount of octets equal to the message body length is read or the connectionis closed.A recipient must parse an HTTP message as a sequence of octets in an encodingthat is a superset of US-ASCII [USASCII]. Parsing an HTTP message as a streamof Unicode characters, without regard for the specific encoding, creates security

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 20]

https://tools.ietf.org/html/rfc3986#section-6
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986#section-2.2

vulnerabilities due to the varying ways that string processing libraries handleinvalid multibyte character sequences that contain the octet LF (%x0A). String-based parsers can only be safely used within protocol elements after theelement has been extracted from the message, such as within a header field-value after message parsing has delineated the individual fields.An HTTP message can be parsed as a stream for incremental processing orforwarding downstream. However, recipients cannot rely on incrementaldelivery of partial messages, since some implementations will buffer or delaymessage forwarding for the sake of network efficiency, security checks, orpayload transformations.A sender must not send whitespace between the start-line and the first headerfield. A recipient that receives whitespace between the start-line and the firstheader field must either reject the message as invalid or consume eachwhitespace-preceded line without further processing of it (i.e., ignore the entireline, along with any subsequent lines preceded by whitespace, until a properlyformed header field is received or the header section is terminated).The presence of such whitespace in a request might be an attempt to trick aserver into ignoring that field or processing the line after it as a new request,either of which might result in a security vulnerability if other implementationswithin the request chain interpret the same message differently. Likewise, thepresence of such whitespace in a response might be ignored by some clients orcause others to cease parsing.
3.1 Start LineAn HTTP message can be either a request from client to server or a responsefrom server to client. Syntactically, the two types of message differ only in thestart-line, which is either a request-line (for requests) or a status-line (forresponses), and in the algorithm for determining the length of the messagebody (Section 3.3).In theory, a client could receive requests and a server could receive responses,distinguishing them by their different start-line formats, but, in practice,servers are implemented to only expect a request (a response is interpreted asan unknown or invalid request method) and clients are implemented to onlyexpect a response.

start-line = request-line / status-line

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 21]

3.1.1 Request LineA request-line begins with a method token, followed by a single space (SP), therequest-target, another single space (SP), the protocol version, and ends withCRLF.
request-line = method SP request-target SP HTTP-version CRLFThe method token indicates the request method to be performed on the targetresource. The request method is case-sensitive.
method = tokenThe request methods defined by this specification can be found in Section 4 of[RFC7231], along with information regarding the HTTP method registry andconsiderations for defining new methods.The request-target identifies the target resource upon which to apply therequest, as defined in Section 5.3.Recipients typically parse the request-line into its component parts by splittingon whitespace (see Section 3.5), since no whitespace is allowed in the threecomponents. Unfortunately, some user agents fail to properly encode or excludewhitespace found in hypertext references, resulting in those disallowedcharacters being sent in a request-target.Recipients of an invalid request-line should respond with either a 400 (BadRequest) error or a 301 (Moved Permanently) redirect with the request-targetproperly encoded. A recipient should not attempt to autocorrect and thenprocess the request without a redirect, since the invalid request-line might bedeliberately crafted to bypass security filters along the request chain.HTTP does not place a predefined limit on the length of a request-line, asdescribed in Section 2.5. A server that receives a method longer than any that itimplements should respond with a 501 (Not Implemented) status code. Aserver that receives a request-target longer than any URI it wishes to parsemust respond with a 414 (URI Too Long) status code (see Section 6.5.12 of[RFC7231]).Various ad hoc limitations on request-line length are found in practice. It isrecommended that all HTTP senders and recipients support, at a minimum,request-line lengths of 8000 octets.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 22]

rfc7231.html#methods
rfc7231.html#status.400
rfc7231.html#status.400
rfc7231.html#status.301
rfc7231.html#status.501
rfc7231.html#status.414
rfc7231.html#status.414

3.1.2 Status LineThe first line of a response message is the status-line, consisting of the protocolversion, a space (SP), the status code, another space, a possibly empty textualphrase describing the status code, and ending with CRLF.
status-line = HTTP-version SP status-code SP reason-phrase CRLFThe status-code element is a 3-digit integer code describing the result of theserver's attempt to understand and satisfy the client's corresponding request.The rest of the response message is to be interpreted in light of the semanticsdefined for that status code. See Section 6 of [RFC7231] for information aboutthe semantics of status codes, including the classes of status code (indicated bythe first digit), the status codes defined by this specification, considerations forthe definition of new status codes, and the IANA registry.
status-code = 3DIGITThe reason-phrase element exists for the sole purpose of providing a textualdescription associated with the numeric status code, mostly out of deference toearlier Internet application protocols that were more frequently used withinteractive text clients. A client should ignore the reason-phrase content.
reason-phrase = *(HTAB / SP / VCHAR / obs-text)

3.2 Header FieldsEach header field consists of a case-insensitive field name followed by a colon(":"), optional leading whitespace, the field value, and optional trailingwhitespace.
header-field = field-name ":" OWS field-value OWS

field-name = token
field-value = *(field-content / obs-fold)
field-content = field-vchar [1*(SP / HTAB) field-vchar]
field-vchar = VCHAR / obs-text

obs-fold = CRLF 1*(SP / HTAB)
; obsolete line folding
; see Section 3.2.4The field-name token labels the corresponding field-value as having thesemantics defined by that header field. For example, the Date header field isdefined in Section 7.1.1.2 of [RFC7231] as containing the origination timestampfor the message in which it appears.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 23]

rfc7231.html#status.codes
rfc7231.html#header.date
rfc7231.html#header.date

3.2.1 Field ExtensibilityHeader fields are fully extensible: there is no limit on the introduction of newfield names, each presumably defining new semantics, nor on the number ofheader fields used in a given message. Existing fields are defined in each part ofthis specification and in many other specifications outside this document set.New header fields can be defined such that, when they are understood by arecipient, they might override or enhance the interpretation of previouslydefined header fields, define preconditions on request evaluation, or refine themeaning of responses.A proxy must forward unrecognized header fields unless the field-name islisted in the Connection header field (Section 6.1) or the proxy is specificallyconfigured to block, or otherwise transform, such fields. Other recipientsshould ignore unrecognized header fields. These requirements allow HTTP'sfunctionality to be enhanced without requiring prior update of deployedintermediaries.All defined header fields ought to be registered with IANA in the "MessageHeaders" registry, as described in Section 8.3 of [RFC7231].
3.2.2 Field OrderThe order in which header fields with differing field names are received is notsignificant. However, it is good practice to send header fields that containcontrol data first, such as Host on requests and Date on responses, so thatimplementations can decide when not to handle a message as early as possible.A server must not apply a request to the target resource until the entirerequest header section is received, since later header fields might includeconditionals, authentication credentials, or deliberately misleading duplicateheader fields that would impact request processing.A sender must not generate multiple header fields with the same field name ina message unless either the entire field value for that header field is defined as acomma-separated list [i.e., #(values)] or the header field is a well-knownexception (as noted below).A recipient may combine multiple header fields with the same field name intoone "field-name: field-value" pair, without changing the semantics of themessage, by appending each subsequent field value to the combined field valuein order, separated by a comma. The order in which header fields with the samefield name are received is therefore significant to the interpretation of thecombined field value; a proxy must not change the order of these field valueswhen forwarding a message.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 24]

rfc7231.html#header.field.registry
rfc7231.html#header.date

Note: In practice, the "Set-Cookie" header field ([RFC6265]) often appearsmultiple times in a response message and does not use the list syntax,violating the above requirements on multiple header fields with the samename. Since it cannot be combined into a single field-value, recipientsought to handle "Set-Cookie" as a special case while processing headerfields. (See Appendix A.2.3 of [Kri2001] for details.)
3.2.3 WhitespaceThis specification uses three rules to denote the use of linear whitespace: OWS(optional whitespace), RWS (required whitespace), and BWS ("bad"whitespace).The OWS rule is used where zero or more linear whitespace octets mightappear. For protocol elements where optional whitespace is preferred toimprove readability, a sender should generate the optional whitespace as asingle SP; otherwise, a sender should not generate optional whitespace exceptas needed to white out invalid or unwanted protocol elements during in-placemessage filtering.The RWS rule is used when at least one linear whitespace octet is required toseparate field tokens. A sender should generate RWS as a single SP.The BWS rule is used where the grammar allows optional whitespace only forhistorical reasons. A sender must not generate BWS in messages. A recipientmust parse for such bad whitespace and remove it before interpreting theprotocol element.

OWS = *(SP / HTAB)
; optional whitespace

RWS = 1*(SP / HTAB)
; required whitespace

BWS = OWS
; "bad" whitespace

3.2.4 Field ParsingMessages are parsed using a generic algorithm, independent of the individualheader field names. The contents within a given field value are not parsed untila later stage of message interpretation (usually after the message's entireheader section has been processed). Consequently, this specification does notuse ABNF rules to define each "Field-Name: Field Value" pair, as was done inprevious editions. Instead, this specification uses ABNF rules that are namedaccording to each registered field name, wherein the rule defines the validgrammar for that field's corresponding field values (i.e., after the field-value hasbeen extracted from the header section by a generic field parser).

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 25]

No whitespace is allowed between the header field-name and colon. In the past,differences in the handling of such whitespace have led to securityvulnerabilities in request routing and response handling. A server must rejectany received request message that contains whitespace between a header field-name and colon with a response code of 400 (Bad Request). A proxy mustremove any such whitespace from a response message before forwarding themessage downstream.A field value might be preceded and/or followed by optional whitespace (OWS);a single SP preceding the field-value is preferred for consistent readability byhumans. The field value does not include any leading or trailing whitespace:OWS occurring before the first non-whitespace octet of the field value or afterthe last non-whitespace octet of the field value ought to be excluded by parserswhen extracting the field value from a header field.Historically, HTTP header field values could be extended over multiple lines bypreceding each extra line with at least one space or horizontal tab (obs-fold).This specification deprecates such line folding except within the message/httpmedia type (Section 8.3.1). A sender must not generate a message that includesline folding (i.e., that has any field-value that contains a match to the obs-foldrule) unless the message is intended for packaging within the message/httpmedia type.A server that receives an obs-fold in a request message that is not within amessage/http container must either reject the message by sending a 400 (BadRequest), preferably with a representation explaining that obsolete line foldingis unacceptable, or replace each received obs-fold with one or more SP octetsprior to interpreting the field value or forwarding the message downstream.A proxy or gateway that receives an obs-fold in a response message that is notwithin a message/http container must either discard the message and replaceit with a 502 (Bad Gateway) response, preferably with a representationexplaining that unacceptable line folding was received, or replace each receivedobs-fold with one or more SP octets prior to interpreting the field value orforwarding the message downstream.A user agent that receives an obs-fold in a response message that is not within amessage/http container must replace each received obs-fold with one or moreSP octets prior to interpreting the field value.Historically, HTTP has allowed field content with text in the ISO‑8859‑1 charset[ISO-8859-1], supporting other charsets only through use of [RFC2047]encoding. In practice, most HTTP header field values use only a subset of theUS-ASCII charset [USASCII]. Newly defined header fields should limit their field

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 26]

rfc7231.html#status.400
rfc7231.html#status.400
rfc7231.html#status.400
rfc7231.html#status.502

values to US‑ASCII octets. A recipient should treat other octets in field content(obs‑text) as opaque data.
3.2.5 Field LimitsHTTP does not place a predefined limit on the length of each header field or onthe length of the header section as a whole, as described in Section 2.5. Variousad hoc limitations on individual header field length are found in practice, oftendepending on the specific field semantics.A server that receives a request header field, or set of fields, larger than itwishes to process must respond with an appropriate 4xx (Client Error) statuscode. Ignoring such header fields would increase the server's vulnerability torequest smuggling attacks (Section 9.5).A client may discard or truncate received header fields that are larger than theclient wishes to process if the field semantics are such that the droppedvalue(s) can be safely ignored without changing the message framing orresponse semantics.
3.2.6 Field Value ComponentsMost HTTP header field values are defined using common syntax components(token, quoted-string, and comment) separated by whitespace or specificdelimiting characters. Delimiters are chosen from the set of US-ASCII visualcharacters not allowed in a token (DQUOTE and "(),/:;<=>?@[\]{}").

token = 1*tchar

tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*"
/ "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
/ DIGIT / ALPHA
; any VCHAR, except delimitersA string of text is parsed as a single value if it is quoted using double-quotemarks.

quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE
qdtext = HTAB / SP /%x21 / %x23-5B / %x5D-7E / obs-text
obs-text = %x80-FFComments can be included in some HTTP header fields by surrounding thecomment text with parentheses. Comments are only allowed in fieldscontaining "comment" as part of their field value definition.
comment = "(" *(ctext / quoted-pair / comment) ")"
ctext = HTAB / SP / %x21-27 / %x2A-5B / %x5D-7E / obs-text

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 27]

rfc7231.html#status.4xx

The backslash octet ("\") can be used as a single-octet quoting mechanismwithin quoted-string and comment constructs. Recipients that process thevalue of a quoted-string must handle a quoted-pair as if it were replaced by theoctet following the backslash.
quoted-pair = "\" (HTAB / SP / VCHAR / obs-text)A sender should not generate a quoted-pair in a quoted-string except wherenecessary to quote DQUOTE and backslash octets occurring within that string.A sender should not generate a quoted-pair in a comment except wherenecessary to quote parentheses ["(" and ")"] and backslash octets occurringwithin that comment.

3.3 Message BodyThe message body (if any) of an HTTP message is used to carry the payloadbody of that request or response. The message body is identical to the payloadbody unless a transfer coding has been applied, as described in Section 3.3.1.
message-body = *OCTETThe rules for when a message body is allowed in a message differ for requestsand responses.The presence of a message body in a request is signaled by a Content-Length orTransfer-Encoding header field. Request message framing is independent ofmethod semantics, even if the method does not define any use for a messagebody.The presence of a message body in a response depends on both the requestmethod to which it is responding and the response status code (Section 3.1.2).Responses to the HEAD request method (Section 4.3.2 of [RFC7231]) neverinclude a message body because the associated response header fields (e.g.,Transfer-Encoding, Content-Length, etc.), if present, indicate only what theirvalues would have been if the request method had been GET (Section 4.3.1 of[RFC7231]). 2xx (Successful) responses to a CONNECT request method (Section4.3.6 of [RFC7231]) switch to tunnel mode instead of having a message body. All1xx (Informational), 204 (No Content), and 304 (Not Modified) responses donot include a message body. All other responses do include a message body,although the body might be of zero length.

3.3.1 Transfer-EncodingThe Transfer-Encoding header field lists the transfer coding namescorresponding to the sequence of transfer codings that have been (or will be)

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 28]

rfc7231.html#HEAD
rfc7231.html#GET
rfc7231.html#status.2xx
rfc7231.html#CONNECT
rfc7231.html#CONNECT
rfc7231.html#status.1xx
rfc7231.html#status.204
rfc7232.html#status.304

applied to the payload body in order to form the message body. Transfercodings are defined in Section 4.
Transfer-Encoding = 1#transfer-codingTransfer-Encoding is analogous to the Content-Transfer-Encoding field ofMIME, which was designed to enable safe transport of binary data over a 7-bittransport service ([RFC2045], Section 6). However, safe transport has adifferent focus for an 8bit-clean transfer protocol. In HTTP's case, Transfer-Encoding is primarily intended to accurately delimit a dynamically generatedpayload and to distinguish payload encodings that are only applied fortransport efficiency or security from those that are characteristics of theselected resource.A recipient must be able to parse the chunked transfer coding (Section 4.1)because it plays a crucial role in framing messages when the payload body sizeis not known in advance. A sender must not apply chunked more than once to amessage body (i.e., chunking an already chunked message is not allowed). If anytransfer coding other than chunked is applied to a request payload body, thesender must apply chunked as the final transfer coding to ensure that themessage is properly framed. If any transfer coding other than chunked isapplied to a response payload body, the sender must either apply chunked asthe final transfer coding or terminate the message by closing the connection.For example,
Transfer-Encoding: gzip, chunkedindicates that the payload body has been compressed using the gzip coding andthen chunked using the chunked coding while forming the message body.Unlike Content-Encoding (Section 3.1.2.1 of [RFC7231]), Transfer-Encoding is aproperty of the message, not of the representation, and any recipient along therequest/response chain may decode the received transfer coding(s) or applyadditional transfer coding(s) to the message body, assuming that correspondingchanges are made to the Transfer-Encoding field-value. Additional informationabout the encoding parameters can be provided by other header fields notdefined by this specification.Transfer-Encoding may be sent in a response to a HEAD request or in a 304(Not Modified) response (Section 4.1 of [RFC7232]) to a GET request, neither ofwhich includes a message body, to indicate that the origin server would haveapplied a transfer coding to the message body if the request had been anunconditional GET. This indication is not required, however, because any

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 29]

https://tools.ietf.org/html/rfc2045#section-6
rfc7231.html#header.content-encoding
rfc7231.html#content.codings
rfc7232.html#status.304
rfc7232.html#status.304
rfc7232.html#status.304

recipient on the response chain (including the origin server) can removetransfer codings when they are not needed.A server must not send a Transfer-Encoding header field in any response witha status code of 1xx (Informational) or 204 (No Content). A server must notsend a Transfer-Encoding header field in any 2xx (Successful) response to aCONNECT request (Section 4.3.6 of [RFC7231]).Transfer-Encoding was added in HTTP/1.1. It is generally assumed thatimplementations advertising only HTTP/1.0 support will not understand howto process a transfer-encoded payload. A client must not send a requestcontaining Transfer-Encoding unless it knows the server will handle HTTP/1.1(or later) requests; such knowledge might be in the form of specific userconfiguration or by remembering the version of a prior received response. Aserver must not send a response containing Transfer-Encoding unless thecorresponding request indicates HTTP/1.1 (or later).A server that receives a request message with a transfer coding it does notunderstand should respond with 501 (Not Implemented).
3.3.2 Content-LengthWhen a message does not have a Transfer-Encoding header field, a Content-Length header field can provide the anticipated size, as a decimal number ofoctets, for a potential payload body. For messages that do include a payloadbody, the Content-Length field-value provides the framing informationnecessary for determining where the body (and message) ends. For messagesthat do not include a payload body, the Content-Length indicates the size of theselected representation (Section 3 of [RFC7231]).

Content-Length = 1*DIGITAn example is
Content-Length: 3495A sender must not send a Content-Length header field in any message thatcontains a Transfer-Encoding header field.A user agent should send a Content-Length in a request message when noTransfer-Encoding is sent and the request method defines a meaning for anenclosed payload body. For example, a Content-Length header field is normallysent in a POST request even when the value is 0 (indicating an empty payloadbody). A user agent should not send a Content-Length header field when the

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 30]

rfc7231.html#status.1xx
rfc7231.html#status.204
rfc7231.html#status.2xx
rfc7231.html#CONNECT
rfc7231.html#status.501
rfc7231.html#representations

request message does not contain a payload body and the method semantics donot anticipate such a body.A server may send a Content-Length header field in a response to a HEADrequest (Section 4.3.2 of [RFC7231]); a server must not send Content-Lengthin such a response unless its field-value equals the decimal number of octetsthat would have been sent in the payload body of a response if the same requesthad used the GET method.A server may send a Content-Length header field in a 304 (Not Modified)response to a conditional GET request (Section 4.1 of [RFC7232]); a servermust not send Content-Length in such a response unless its field-value equalsthe decimal number of octets that would have been sent in the payload body ofa 200 (OK) response to the same request.A server must not send a Content-Length header field in any response with astatus code of 1xx (Informational) or 204 (No Content). A server must not senda Content-Length header field in any 2xx (Successful) response to a CONNECTrequest (Section 4.3.6 of [RFC7231]).Aside from the cases defined above, in the absence of Transfer-Encoding, anorigin server should send a Content-Length header field when the payloadbody size is known prior to sending the complete header section. This willallow downstream recipients to measure transfer progress, know when areceived message is complete, and potentially reuse the connection foradditional requests.Any Content-Length field value greater than or equal to zero is valid. Since thereis no predefined limit to the length of a payload, a recipient must anticipatepotentially large decimal numerals and prevent parsing errors due to integerconversion overflows (Section 9.3).If a message is received that has multiple Content-Length header fields withfield-values consisting of the same decimal value, or a single Content-Lengthheader field with a field value containing a list of identical decimal values (e.g.,"Content-Length: 42, 42"), indicating that duplicate Content-Length headerfields have been generated or combined by an upstream message processor,then the recipient must either reject the message as invalid or replace theduplicated field-values with a single valid Content-Length field containing thatdecimal value prior to determining the message body length or forwarding themessage.
Note: HTTP's use of Content-Length for message framing differssignificantly from the same field's use in MIME, where it is an optional fieldused only within the "message/external-body" media-type.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 31]

rfc7231.html#HEAD
rfc7232.html#status.304
rfc7232.html#status.304
rfc7231.html#status.200
rfc7231.html#status.1xx
rfc7231.html#status.204
rfc7231.html#status.2xx
rfc7231.html#CONNECT

3.3.3 Message Body LengthThe length of a message body is determined by one of the following (in order ofprecedence):1. Any response to a HEAD request and any response with a 1xx(Informational), 204 (No Content), or 304 (Not Modified) status code isalways terminated by the first empty line after the header fields, regardlessof the header fields present in the message, and thus cannot contain amessage body.2. Any 2xx (Successful) response to a CONNECT request implies that theconnection will become a tunnel immediately after the empty line thatconcludes the header fields. A client must ignore any Content-Length orTransfer-Encoding header fields received in such a message.3. If a Transfer-Encoding header field is present and the chunked transfercoding (Section 4.1) is the final encoding, the message body length isdetermined by reading and decoding the chunked data until the transfercoding indicates the data is complete.If a Transfer-Encoding header field is present in a response and thechunked transfer coding is not the final encoding, the message body lengthis determined by reading the connection until it is closed by the server. If aTransfer-Encoding header field is present in a request and the chunkedtransfer coding is not the final encoding, the message body length cannotbe determined reliably; the server must respond with the 400 (BadRequest) status code and then close the connection.If a message is received with both a Transfer-Encoding and a Content-Length header field, the Transfer-Encoding overrides the Content-Length.Such a message might indicate an attempt to perform request smuggling(Section 9.5) or response splitting (Section 9.4) and ought to be handled asan error. A sender must remove the received Content-Length field prior toforwarding such a message downstream.4. If a message is received without Transfer-Encoding and with eithermultiple Content-Length header fields having differing field-values or asingle Content-Length header field having an invalid value, then themessage framing is invalid and the recipient must treat it as anunrecoverable error. If this is a request message, the server must respondwith a 400 (Bad Request) status code and then close the connection. If thisis a response message received by a proxy, the proxy must close theconnection to the server, discard the received response, and send a 502(Bad Gateway) response to the client. If this is a response message received

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 32]

rfc7231.html#status.1xx
rfc7231.html#status.1xx
rfc7231.html#status.204
rfc7232.html#status.304
rfc7231.html#status.2xx
rfc7231.html#status.400
rfc7231.html#status.400
rfc7231.html#status.400
rfc7231.html#status.502
rfc7231.html#status.502

by a user agent, the user agent must close the connection to the server anddiscard the received response.5. If a valid Content-Length header field is present without Transfer-Encoding, its decimal value defines the expected message body length inoctets. If the sender closes the connection or the recipient times out beforethe indicated number of octets are received, the recipient must considerthe message to be incomplete and close the connection.6. If this is a request message and none of the above are true, then themessage body length is zero (no message body is present).7. Otherwise, this is a response message without a declared message bodylength, so the message body length is determined by the number of octetsreceived prior to the server closing the connection.Since there is no way to distinguish a successfully completed, close-delimitedmessage from a partially received message interrupted by network failure, aserver should generate encoding or length-delimited messages wheneverpossible. The close-delimiting feature exists primarily for backwardscompatibility with HTTP/1.0.A server may reject a request that contains a message body but not a Content-Length by responding with 411 (Length Required).Unless a transfer coding other than chunked has been applied, a client thatsends a request containing a message body should use a valid Content-Lengthheader field if the message body length is known in advance, rather than thechunked transfer coding, since some existing services respond to chunked witha 411 (Length Required) status code even though they understand the chunkedtransfer coding. This is typically because such services are implemented via agateway that requires a content-length in advance of being called and the serveris unable or unwilling to buffer the entire request before processing.A user agent that sends a request containing a message body must send a validContent-Length header field if it does not know the server will handle HTTP/1.1 (or later) requests; such knowledge can be in the form of specific userconfiguration or by remembering the version of a prior received response.If the final response to the last request on a connection has been completelyreceived and there remains additional data to read, a user agent may discard theremaining data or attempt to determine if that data belongs as part of the priorresponse body, which might be the case if the prior message's Content-Lengthvalue is incorrect. A client must not process, cache, or forward such extra data

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 33]

rfc7231.html#status.411
rfc7231.html#status.411

as a separate response, since such behavior would be vulnerable to cachepoisoning.
3.4 Handling Incomplete MessagesA server that receives an incomplete request message, usually due to a canceledrequest or a triggered timeout exception, may send an error response prior toclosing the connection.A client that receives an incomplete response message, which can occur when aconnection is closed prematurely or when decoding a supposedly chunkedtransfer coding fails, must record the message as incomplete. Cacherequirements for incomplete responses are defined in Section 3 of [RFC7234].If a response terminates in the middle of the header section (before the emptyline is received) and the status code might rely on header fields to convey thefull meaning of the response, then the client cannot assume that meaning hasbeen conveyed; the client might need to repeat the request in order todetermine what action to take next.A message body that uses the chunked transfer coding is incomplete if the zero-sized chunk that terminates the encoding has not been received. A message thatuses a valid Content-Length is incomplete if the size of the message bodyreceived (in octets) is less than the value given by Content-Length. A responsethat has neither chunked transfer coding nor Content-Length is terminated byclosure of the connection and, thus, is considered complete regardless of thenumber of message body octets received, provided that the header section wasreceived intact.
3.5 Message Parsing RobustnessOlder HTTP/1.0 user agent implementations might send an extra CRLF after aPOST request as a workaround for some early server applications that failed toread message body content that was not terminated by a line-ending. An HTTP/1.1 user agent must not preface or follow a request with an extra CRLF. Ifterminating the request message body with a line-ending is desired, then theuser agent must count the terminating CRLF octets as part of the message bodylength.In the interest of robustness, a server that is expecting to receive and parse arequest-line should ignore at least one empty line (CRLF) received prior to therequest-line.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 34]

rfc7234.html#response.cacheability

Although the line terminator for the start-line and header fields is the sequenceCRLF, a recipient may recognize a single LF as a line terminator and ignore anypreceding CR.Although the request-line and status-line grammar rules require that each ofthe component elements be separated by a single SP octet, recipients mayinstead parse on whitespace-delimited word boundaries and, aside from theCRLF terminator, treat any form of whitespace as the SP separator whileignoring preceding or trailing whitespace; such whitespace includes one ormore of the following octets: SP, HTAB, VT (%x0B), FF (%x0C), or bare CR.However, lenient parsing can result in security vulnerabilities if there aremultiple recipients of the message and each has its own unique interpretationof robustness (see Section 9.5).When a server listening only for HTTP request messages, or processing whatappears from the start-line to be an HTTP request message, receives a sequenceof octets that does not match the HTTP-message grammar aside from therobustness exceptions listed above, the server should respond with a 400 (BadRequest) response.
4. Transfer Codings

Transfer coding names are used to indicate an encoding transformation that hasbeen, can be, or might need to be applied to a payload body in order to ensure"safe transport" through the network. This differs from a content coding in thatthe transfer coding is a property of the message rather than a property of therepresentation that is being transferred.
transfer-coding = "chunked" ; Section 4.1

/ "compress" ; Section 4.2.1
/ "deflate" ; Section 4.2.2
/ "gzip" ; Section 4.2.3
/ transfer-extension

transfer-extension = token *(OWS ";" OWS transfer-parameter)Parameters are in the form of a name or name=value pair.
transfer-parameter = token BWS "=" BWS (token / quoted-string)All transfer-coding names are case-insensitive and ought to be registered withinthe HTTP Transfer Coding registry, as defined in Section 8.4. They are used inthe TE (Section 4.3) and Transfer-Encoding (Section 3.3.1) header fields.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 35]

rfc7231.html#status.400
rfc7231.html#status.400

4.1 Chunked Transfer CodingThe chunked transfer coding wraps the payload body in order to transfer it as aseries of chunks, each with its own size indicator, followed by an optionaltrailer containing header fields. Chunked enables content streams of unknownsize to be transferred as a sequence of length-delimited buffers, which enablesthe sender to retain connection persistence and the recipient to know when ithas received the entire message.
chunked-body = *chunk

last-chunk
trailer-part
CRLF

chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF

chunk-size = 1*HEXDIG
last-chunk = 1*("0") [chunk-ext] CRLF

chunk-data = 1*OCTET ; a sequence of chunk-size octetsThe chunk-size field is a string of hex digits indicating the size of the chunk-datain octets. The chunked transfer coding is complete when a chunk with a chunk-size of zero is received, possibly followed by a trailer, and finally terminated byan empty line.A recipient must be able to parse and decode the chunked transfer coding.
4.1.1 Chunk ExtensionsThe chunked encoding allows each chunk to include zero or more chunkextensions, immediately following the chunk-size, for the sake of supplying per-chunk metadata (such as a signature or hash), mid-message controlinformation, or randomization of message body size.

chunk-ext = *(";" chunk-ext-name ["=" chunk-ext-val])

chunk-ext-name = token
chunk-ext-val = token / quoted-stringThe chunked encoding is specific to each connection and is likely to be removedor recoded by each recipient (including intermediaries) before any higher-levelapplication would have a chance to inspect the extensions. Hence, use of chunkextensions is generally limited to specialized HTTP services such as "longpolling" (where client and server can have shared expectations regarding theuse of chunk extensions) or for padding within an end-to-end securedconnection.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 36]

A recipient must ignore unrecognized chunk extensions. A server ought to limitthe total length of chunk extensions received in a request to an amountreasonable for the services provided, in the same way that it applies lengthlimitations and timeouts for other parts of a message, and generate anappropriate 4xx (Client Error) response if that amount is exceeded.
4.1.2 Chunked Trailer PartA trailer allows the sender to include additional fields at the end of a chunkedmessage in order to supply metadata that might be dynamically generatedwhile the message body is sent, such as a message integrity check, digitalsignature, or post-processing status. The trailer fields are identical to headerfields, except they are sent in a chunked trailer instead of the message's headersection.

trailer-part = *(header-field CRLF)A sender must not generate a trailer that contains a field necessary formessage framing (e.g., Transfer-Encoding and Content-Length), routing (e.g.,Host), request modifiers (e.g., controls and conditionals in Section 5 of[RFC7231]), authentication (e.g., see [RFC7235] and [RFC6265]), responsecontrol data (e.g., see Section 7.1 of [RFC7231]), or determining how to processthe payload (e.g., Content-Encoding, Content-Type, Content-Range, andTrailer).When a chunked message containing a non-empty trailer is received, therecipient may process the fields (aside from those forbidden above) as if theywere appended to the message's header section. A recipient must ignore (orconsider as an error) any fields that are forbidden to be sent in a trailer, sinceprocessing them as if they were present in the header section might bypassexternal security filters.Unless the request includes a TE header field indicating "trailers" is acceptable,as described in Section 4.3, a server should not generate trailer fields that itbelieves are necessary for the user agent to receive. Without a TE containing"trailers", the server ought to assume that the trailer fields might be silentlydiscarded along the path to the user agent. This requirement allowsintermediaries to forward a de-chunked message to an HTTP/1.0 recipientwithout buffering the entire response.
4.1.3 Decoding ChunkedA process for decoding the chunked transfer coding can be represented inpseudo-code as:

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 37]

rfc7231.html#status.4xx
rfc7231.html#request.header.fields
rfc7231.html#response.control.data
rfc7231.html#header.content-encoding
rfc7231.html#header.content-type
rfc7233.html#header.content-range

length := 0
read chunk-size, chunk-ext (if any), and CRLF
while (chunk-size > 0) {

read chunk-data and CRLF
append chunk-data to decoded-body
length := length + chunk-size
read chunk-size, chunk-ext (if any), and CRLF

}
read trailer field
while (trailer field is not empty) {

if (trailer field is allowed to be sent in a trailer) {
append trailer field to existing header fields

}
read trailer-field

}
Content-Length := length
Remove "chunked" from Transfer-Encoding
Remove Trailer from existing header fields

4.2 Compression CodingsThe codings defined below can be used to compress the payload of a message.
4.2.1 Compress CodingThe "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding [Welch]that is commonly produced by the UNIX file compression program "compress".A recipient should consider "x-compress" to be equivalent to "compress".
4.2.2 Deflate CodingThe "deflate" coding is a "zlib" data format [RFC1950] containing a "deflate"compressed data stream [RFC1951] that uses a combination of the Lempel-Ziv(LZ77) compression algorithm and Huffman coding.

Note: Some non-conformant implementations send the "deflate"compressed data without the zlib wrapper.
4.2.3 Gzip CodingThe "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy Check(CRC) that is commonly produced by the gzip file compression program[RFC1952]. A recipient should consider "x-gzip" to be equivalent to "gzip".

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 38]

4.3 TEThe "TE" header field in a request indicates what transfer codings, besideschunked, the client is willing to accept in response, and whether or not theclient is willing to accept trailer fields in a chunked transfer coding.The TE field-value consists of a comma-separated list of transfer coding names,each allowing for optional parameters (as described in Section 4), and/or thekeyword "trailers". A client must not send the chunked transfer coding name inTE; chunked is always acceptable for HTTP/1.1 recipients.
TE = #t-codings
t-codings = "trailers" / (transfer-coding [t-ranking])
t-ranking = OWS ";" OWS "q=" rank
rank = ("0" ["." 0*3DIGIT])

/ ("1" ["." 0*3("0")])Three examples of TE use are below.
TE: deflate
TE:
TE: trailers, deflate;q=0.5The presence of the keyword "trailers" indicates that the client is willing toaccept trailer fields in a chunked transfer coding, as defined in Section 4.1.2, onbehalf of itself and any downstream clients. For requests from an intermediary,this implies that either: (a) all downstream clients are willing to accept trailerfields in the forwarded response; or, (b) the intermediary will attempt to bufferthe response on behalf of downstream recipients. Note that HTTP/1.1 does notdefine any means to limit the size of a chunked response such that anintermediary can be assured of buffering the entire response.When multiple transfer codings are acceptable, the client may rank the codingsby preference using a case-insensitive "q" parameter (similar to the qvaluesused in content negotiation fields, Section 5.3.1 of [RFC7231]). The rank value isa real number in the range 0 through 1, where 0.001 is the least preferred and 1is the most preferred; a value of 0 means "not acceptable".If the TE field-value is empty or if no TE field is present, the only acceptabletransfer coding is chunked. A message with no transfer coding is alwaysacceptable.Since the TE header field only applies to the immediate connection, a sender ofTE must also send a "TE" connection option within the Connection header field(Section 6.1) in order to prevent the TE field from being forwarded byintermediaries that do not support its semantics.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 39]

rfc7231.html#quality.values

4.4 TrailerWhen a message includes a message body encoded with the chunked transfercoding and the sender desires to send metadata in the form of trailer fields atthe end of the message, the sender should generate a Trailer header fieldbefore the message body to indicate which fields will be present in the trailers.This allows the recipient to prepare for receipt of that metadata before it startsprocessing the body, which is useful if the message is being streamed and therecipient wishes to confirm an integrity check on the fly.
Trailer = 1#field-name

5. Message Routing

HTTP request message routing is determined by each client based on the targetresource, the client's proxy configuration, and establishment or reuse of aninbound connection. The corresponding response routing follows the sameconnection chain back to the client.
5.1 Identifying a Target ResourceHTTP is used in a wide variety of applications, ranging from general-purposecomputers to home appliances. In some cases, communication options arehard-coded in a client's configuration. However, most HTTP clients rely on thesame resource identification mechanism and configuration techniques asgeneral-purpose Web browsers.HTTP communication is initiated by a user agent for some purpose. Thepurpose is a combination of request semantics, which are defined in [RFC7231],and a target resource upon which to apply those semantics. A URI reference(Section 2.7) is typically used as an identifier for the "target resource", which auser agent would resolve to its absolute form in order to obtain the "target URI".The target URI excludes the reference's fragment component, if any, sincefragment identifiers are reserved for client-side processing ([RFC3986], Section3.5).
5.2 Connecting InboundOnce the target URI is determined, a client needs to decide whether a networkrequest is necessary to accomplish the desired semantics and, if so, where thatrequest is to be directed.If the client has a cache [RFC7234] and the request can be satisfied by it, thenthe request is usually directed there first.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 40]

https://tools.ietf.org/html/rfc3986#section-3.5
https://tools.ietf.org/html/rfc3986#section-3.5

If the request is not satisfied by a cache, then a typical client will check itsconfiguration to determine whether a proxy is to be used to satisfy the request.Proxy configuration is implementation-dependent, but is often based on URIprefix matching, selective authority matching, or both, and the proxy itself isusually identified by an "http" or "https" URI. If a proxy is applicable, the clientconnects inbound by establishing (or reusing) a connection to that proxy.If no proxy is applicable, a typical client will invoke a handler routine, usuallyspecific to the target URI's scheme, to connect directly to an authority for thetarget resource. How that is accomplished is dependent on the target URIscheme and defined by its associated specification, similar to how thisspecification defines origin server access for resolution of the "http"(Section 2.7.1) and "https" (Section 2.7.2) schemes.HTTP requirements regarding connection management are defined inSection 6.
5.3 Request TargetOnce an inbound connection is obtained, the client sends an HTTP requestmessage (Section 3) with a request-target derived from the target URI. Thereare four distinct formats for the request-target, depending on both the methodbeing requested and whether the request is to a proxy.

request-target = origin-form
/ absolute-form
/ authority-form
/ asterisk-form

5.3.1 origin-formThe most common form of request-target is the origin-form.
origin-form = absolute-path ["?" query]When making a request directly to an origin server, other than a CONNECT orserver-wide OPTIONS request (as detailed below), a client must send only theabsolute path and query components of the target URI as the request-target. Ifthe target URI's path component is empty, the client must send "/" as the pathwithin the origin-form of request-target. A Host header field is also sent, asdefined in Section 5.4.For example, a client wishing to retrieve a representation of the resourceidentified as

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 41]

http://www.example.org/where?q=nowdirectly from the origin server would open (or reuse) a TCP connection to port80 of the host "www.example.org" and send the lines:
GET /where?q=now HTTP/1.1
Host: www.example.orgfollowed by the remainder of the request message.

5.3.2 absolute-formWhen making a request to a proxy, other than a CONNECT or server-wideOPTIONS request (as detailed below), a client must send the target URI in
absolute-form as the request-target.

absolute-form = absolute-URIThe proxy is requested to either service that request from a valid cache, ifpossible, or make the same request on the client's behalf to either the nextinbound proxy server or directly to the origin server indicated by the request-target. Requirements on such "forwarding" of messages are defined inSection 5.7.An example absolute-form of request-line would be:
GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1To allow for transition to the absolute-form for all requests in some futureversion of HTTP, a server must accept the absolute-form in requests, eventhough HTTP/1.1 clients will only send them in requests to proxies.

5.3.3 authority-formThe authority-form of request-target is only used for CONNECT requests(Section 4.3.6 of [RFC7231]).
authority-form = authorityWhen making a CONNECT request to establish a tunnel through one or moreproxies, a client must send only the target URI's authority component(excluding any userinfo and its "@" delimiter) as the request-target. Forexample,

CONNECT www.example.com:80 HTTP/1.1

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 42]

rfc7231.html#CONNECT

5.3.4 asterisk-formThe asterisk-form of request-target is only used for a server-wide OPTIONSrequest (Section 4.3.7 of [RFC7231]).
asterisk-form = "*"When a client wishes to request OPTIONS for the server as a whole, as opposedto a specific named resource of that server, the client must send only "*"(%x2A) as the request-target. For example,

OPTIONS * HTTP/1.1If a proxy receives an OPTIONS request with an absolute-form of request-targetin which the URI has an empty path and no query component, then the lastproxy on the request chain must send a request-target of "*" when it forwardsthe request to the indicated origin server.For example, the request
OPTIONS http://www.example.org:8001 HTTP/1.1would be forwarded by the final proxy as
OPTIONS * HTTP/1.1
Host: www.example.org:8001after connecting to port 8001 of host "www.example.org".

5.4 HostThe "Host" header field in a request provides the host and port informationfrom the target URI, enabling the origin server to distinguish among resourceswhile servicing requests for multiple host names on a single IP address.
Host = uri-host [":" port] ; Section 2.7.1A client must send a Host header field in all HTTP/1.1 request messages. If thetarget URI includes an authority component, then a client must send a field-value for Host that is identical to that authority component, excluding anyuserinfo subcomponent and its "@" delimiter (Section 2.7.1). If the authoritycomponent is missing or undefined for the target URI, then a client must send aHost header field with an empty field-value.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 43]

rfc7231.html#OPTIONS

Since the Host field-value is critical information for handling a request, a useragent should generate Host as the first header field following the request-line.For example, a GET request to the origin server for <http://www.example.org/pub/WWW/> would begin with:
GET /pub/WWW/ HTTP/1.1
Host: www.example.orgA client must send a Host header field in an HTTP/1.1 request even if therequest-target is in the absolute-form, since this allows the Host information tobe forwarded through ancient HTTP/1.0 proxies that might not haveimplemented Host.When a proxy receives a request with an absolute-form of request-target, theproxy must ignore the received Host header field (if any) and instead replace itwith the host information of the request-target. A proxy that forwards such arequest must generate a new Host field-value based on the received request-target rather than forward the received Host field-value.Since the Host header field acts as an application-level routing mechanism, it isa frequent target for malware seeking to poison a shared cache or redirect arequest to an unintended server. An interception proxy is particularlyvulnerable if it relies on the Host field-value for redirecting requests to internalservers, or for use as a cache key in a shared cache, without first verifying thatthe intercepted connection is targeting a valid IP address for that host.A server must respond with a 400 (Bad Request) status code to any HTTP/1.1request message that lacks a Host header field and to any request message thatcontains more than one Host header field or a Host header field with an invalidfield-value.

5.5 Effective Request URISince the request-target often contains only part of the user agent's target URI,a server reconstructs the intended target as an "effective request URI" toproperly service the request. This reconstruction involves both the server'slocal configuration and information communicated in the request-target, Hostheader field, and connection context.For a user agent, the effective request URI is the target URI.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 44]

rfc7231.html#status.400

If the request-target is in absolute-form, the effective request URI is the same asthe request-target. Otherwise, the effective request URI is constructed asfollows:If the server's configuration (or outbound gateway) provides a fixed URIscheme, that scheme is used for the effective request URI. Otherwise, ifthe request is received over a TLS-secured TCP connection, the effectiverequest URI's scheme is "https"; if not, the scheme is "http".If the server's configuration (or outbound gateway) provides a fixed URIauthority component, that authority is used for the effective requestURI. If not, then if the request-target is in authority-form, the effectiverequest URI's authority component is the same as the request-target. Ifnot, then if a Host header field is supplied with a non-empty field-value,the authority component is the same as the Host field-value. Otherwise,the authority component is assigned the default name configured forthe server and, if the connection's incoming TCP port number differsfrom the default port for the effective request URI's scheme, then acolon (":") and the incoming port number (in decimal form) areappended to the authority component.If the request-target is in authority-form or asterisk-form, the effectiverequest URI's combined path and query component is empty.Otherwise, the combined path and query component is the same as therequest-target.The components of the effective request URI, once determined as above,can be combined into absolute-URI form by concatenating the scheme,"://", authority, and combined path and query component.Example 1: the following message received over an insecure TCP connection
GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.example.org:8080has an effective request URI of
http://www.example.org:8080/pub/WWW/TheProject.htmlExample 2: the following message received over a TLS-secured TCP connection
OPTIONS * HTTP/1.1
Host: www.example.orghas an effective request URI of

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 45]

https://www.example.orgRecipients of an HTTP/1.0 request that lacks a Host header field might need touse heuristics (e.g., examination of the URI path for something unique to aparticular host) in order to guess the effective request URI's authoritycomponent.Once the effective request URI has been constructed, an origin server needs todecide whether or not to provide service for that URI via the connection inwhich the request was received. For example, the request might have beenmisdirected, deliberately or accidentally, such that the information within areceived request-target or Host header field differs from the host or port uponwhich the connection has been made. If the connection is from a trustedgateway, that inconsistency might be expected; otherwise, it might indicate anattempt to bypass security filters, trick the server into delivering non-publiccontent, or poison a cache. See Section 9 for security considerations regardingmessage routing.
5.6 Associating a Response to a RequestHTTP does not include a request identifier for associating a given requestmessage with its corresponding one or more response messages. Hence, itrelies on the order of response arrival to correspond exactly to the order inwhich requests are made on the same connection. More than one responsemessage per request only occurs when one or more informational responses(1xx, see Section 6.2 of [RFC7231]) precede a final response to the samerequest.A client that has more than one outstanding request on a connection mustmaintain a list of outstanding requests in the order sent and must associateeach received response message on that connection to the highest orderedrequest that has not yet received a final (non-1xx) response.
5.7 Message ForwardingAs described in Section 2.3, intermediaries can serve a variety of roles in theprocessing of HTTP requests and responses. Some intermediaries are used toimprove performance or availability. Others are used for access control or tofilter content. Since an HTTP stream has characteristics similar to a pipe-and-filter architecture, there are no inherent limits to the extent an intermediarycan enhance (or interfere) with either direction of the stream.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 46]

rfc7231.html#status.1xx
rfc7231.html#status.1xx
rfc7231.html#status.1xx

An intermediary not acting as a tunnel must implement the Connection headerfield, as specified in Section 6.1, and exclude fields from being forwarded thatare only intended for the incoming connection.An intermediary must not forward a message to itself unless it is protectedfrom an infinite request loop. In general, an intermediary ought to recognize itsown server names, including any aliases, local variations, or literal IP addresses,and respond to such requests directly.
5.7.1 ViaThe "Via" header field indicates the presence of intermediate protocols andrecipients between the user agent and the server (on requests) or between theorigin server and the client (on responses), similar to the "Received" headerfield in email (Section 3.6.7 of [RFC5322]). Via can be used for tracking messageforwards, avoiding request loops, and identifying the protocol capabilities ofsenders along the request/response chain.

Via = 1#(received-protocol RWS received-by [RWS comment])

received-protocol = [protocol-name "/"] protocol-version
; see Section 6.7

received-by = (uri-host [":" port]) / pseudonym
pseudonym = tokenMultiple Via field values represent each proxy or gateway that has forwardedthe message. Each intermediary appends its own information about how themessage was received, such that the end result is ordered according to thesequence of forwarding recipients.A proxy must send an appropriate Via header field, as described below, in eachmessage that it forwards. An HTTP-to-HTTP gateway must send an appropriateVia header field in each inbound request message and may send a Via headerfield in forwarded response messages.For each intermediary, the received-protocol indicates the protocol andprotocol version used by the upstream sender of the message. Hence, the Viafield value records the advertised protocol capabilities of the request/responsechain such that they remain visible to downstream recipients; this can be usefulfor determining what backwards-incompatible features might be safe to use inresponse, or within a later request, as described in Section 2.6. For brevity, theprotocol-name is omitted when the received protocol is HTTP.The received-by portion of the field value is normally the host and optional portnumber of a recipient server or client that subsequently forwarded themessage. However, if the real host is considered to be sensitive information, a

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 47]

https://tools.ietf.org/html/rfc5322#section-3.6.7

sender may replace it with a pseudonym. If a port is not provided, a recipientmay interpret that as meaning it was received on the default TCP port, if any, forthe received-protocol.A sender may generate comments in the Via header field to identify thesoftware of each recipient, analogous to the User-Agent and Server headerfields. However, all comments in the Via field are optional, and a recipient mayremove them prior to forwarding the message.For example, a request message could be sent from an HTTP/1.0 user agent toan internal proxy code-named "fred", which uses HTTP/1.1 to forward therequest to a public proxy at p.example.net, which completes the request byforwarding it to the origin server at www.example.com. The request received bywww.example.com would then have the following Via header field:
Via: 1.0 fred, 1.1 p.example.netAn intermediary used as a portal through a network firewall should notforward the names and ports of hosts within the firewall region unless it isexplicitly enabled to do so. If not enabled, such an intermediary should replaceeach received-by host of any host behind the firewall by an appropriatepseudonym for that host.An intermediary may combine an ordered subsequence of Via header fieldentries into a single such entry if the entries have identical received-protocolvalues. For example,
Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucycould be collapsed to
Via: 1.0 ricky, 1.1 mertz, 1.0 lucyA sender should not combine multiple entries unless they are all under thesame organizational control and the hosts have already been replaced bypseudonyms. A sender must not combine entries that have different received-protocol values.

5.7.2 TransformationsSome intermediaries include features for transforming messages and theirpayloads. A proxy might, for example, convert between image formats in orderto save cache space or to reduce the amount of traffic on a slow link. However,operational problems might occur when these transformations are applied to

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 48]

rfc7231.html#header.user-agent
rfc7231.html#header.server

payloads intended for critical applications, such as medical imaging or scientificdata analysis, particularly when integrity checks or digital signatures are usedto ensure that the payload received is identical to the original.An HTTP-to-HTTP proxy is called a "transforming proxy" if it is designed orconfigured to modify messages in a semantically meaningful way (i.e.,modifications, beyond those required by normal HTTP processing, that changethe message in a way that would be significant to the original sender orpotentially significant to downstream recipients). For example, a transformingproxy might be acting as a shared annotation server (modifying responses toinclude references to a local annotation database), a malware filter, a formattranscoder, or a privacy filter. Such transformations are presumed to be desiredby whichever client (or client organization) selected the proxy.If a proxy receives a request-target with a host name that is not a fully qualifieddomain name, it may add its own domain to the host name it received whenforwarding the request. A proxy must not change the host name if the request-target contains a fully qualified domain name.A proxy must not modify the "absolute-path" and "query" parts of the receivedrequest-target when forwarding it to the next inbound server, except as notedabove to replace an empty path with "/" or "*".A proxy may modify the message body through application or removal of atransfer coding (Section 4).A proxy must not transform the payload (Section 3.3 of [RFC7231]) of amessage that contains a no-transform cache-control directive (Section 5.2 of[RFC7234]).A proxy may transform the payload of a message that does not contain a no-transform cache-control directive. A proxy that transforms a payload must adda Warning header field with the warn-code of 214 ("Transformation Applied") ifone is not already in the message (see Section 5.5 of [RFC7234]). A proxy thattransforms the payload of a 200 (OK) response can further inform downstreamrecipients that a transformation has been applied by changing the responsestatus code to 203 (Non-Authoritative Information) (Section 6.3.4 of[RFC7231]).A proxy should not modify header fields that provide information about theendpoints of the communication chain, the resource state, or the selectedrepresentation (other than the payload) unless the field's definition specificallyallows such modification or the modification is deemed necessary for privacy orsecurity.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 49]

rfc7231.html#payload
rfc7234.html#header.cache-control
rfc7234.html#header.warning
rfc7234.html#header.warning
rfc7231.html#status.200
rfc7231.html#status.203
rfc7231.html#status.203

6. Connection Management

HTTP messaging is independent of the underlying transport- or session-layerconnection protocol(s). HTTP only presumes a reliable transport with in-orderdelivery of requests and the corresponding in-order delivery of responses. Themapping of HTTP request and response structures onto the data units of anunderlying transport protocol is outside the scope of this specification.As described in Section 5.2, the specific connection protocols to be used for anHTTP interaction are determined by client configuration and the target URI. Forexample, the "http" URI scheme (Section 2.7.1) indicates a default connection ofTCP over IP, with a default TCP port of 80, but the client might be configured touse a proxy via some other connection, port, or protocol.HTTP implementations are expected to engage in connection management,which includes maintaining the state of current connections, establishing a newconnection or reusing an existing connection, processing messages received ona connection, detecting connection failures, and closing each connection. Mostclients maintain multiple connections in parallel, including more than oneconnection per server endpoint. Most servers are designed to maintainthousands of concurrent connections, while controlling request queues toenable fair use and detect denial-of-service attacks.
6.1 ConnectionThe "Connection" header field allows the sender to indicate desired controloptions for the current connection. In order to avoid confusing downstreamrecipients, a proxy or gateway must remove or replace any received connectionoptions before forwarding the message.When a header field aside from Connection is used to supply controlinformation for or about the current connection, the sender must list thecorresponding field-name within the Connection header field. A proxy orgateway must parse a received Connection header field before a message isforwarded and, for each connection-option in this field, remove any headerfield(s) from the message with the same name as the connection-option, andthen remove the Connection header field itself (or replace it with theintermediary's own connection options for the forwarded message).Hence, the Connection header field provides a declarative way of distinguishingheader fields that are only intended for the immediate recipient ("hop-by-hop")from those fields that are intended for all recipients on the chain ("end-to-end"), enabling the message to be self-descriptive and allowing future

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 50]

connection-specific extensions to be deployed without fear that they will beblindly forwarded by older intermediaries.The Connection header field's value has the following grammar:
Connection = 1#connection-option
connection-option = tokenConnection options are case-insensitive.A sender must not send a connection option corresponding to a header fieldthat is intended for all recipients of the payload. For example, Cache-Control isnever appropriate as a connection option (Section 5.2 of [RFC7234]).The connection options do not always correspond to a header field present inthe message, since a connection-specific header field might not be needed ifthere are no parameters associated with a connection option. In contrast, aconnection-specific header field that is received without a correspondingconnection option usually indicates that the field has been improperlyforwarded by an intermediary and ought to be ignored by the recipient.When defining new connection options, specification authors ought to surveyexisting header field names and ensure that the new connection option doesnot share the same name as an already deployed header field. Defining a newconnection option essentially reserves that potential field-name for carryingadditional information related to the connection option, since it would beunwise for senders to use that field-name for anything else.The "close" connection option is defined for a sender to signal that thisconnection will be closed after completion of the response. For example,
Connection: closein either the request or the response header fields indicates that the sender isgoing to close the connection after the current request/response is complete(Section 6.6).A client that does not support persistent connections must send the "close"connection option in every request message.A server that does not support persistent connections must send the "close"connection option in every response message that does not have a 1xx(Informational) status code.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 51]

rfc7234.html#header.cache-control
rfc7234.html#header.cache-control
rfc7231.html#status.1xx
rfc7231.html#status.1xx

6.2 EstablishmentIt is beyond the scope of this specification to describe how connections areestablished via various transport- or session-layer protocols. Each connectionapplies to only one transport link.
6.3 PersistenceHTTP/1.1 defaults to the use of "persistent connections", allowing multiplerequests and responses to be carried over a single connection. The "close"connection option is used to signal that a connection will not persist after thecurrent request/response. HTTP implementations should support persistentconnections.A recipient determines whether a connection is persistent or not based on themost recently received message's protocol version and Connection header field(if any):• If the "close" connection option is present, the connection will notpersist after the current response; else,• If the received protocol is HTTP/1.1 (or later), the connection willpersist after the current response; else,• If the received protocol is HTTP/1.0, the "keep-alive" connection optionis present, the recipient is not a proxy, and the recipient wishes to honorthe HTTP/1.0 "keep-alive" mechanism, the connection will persist afterthe current response; otherwise,• The connection will close after the current response.A client may send additional requests on a persistent connection until it sendsor receives a "close" connection option or receives an HTTP/1.0 responsewithout a "keep-alive" connection option.In order to remain persistent, all messages on a connection need to have a self-defined message length (i.e., one not defined by closure of the connection), asdescribed in Section 3.3. A server must read the entire request message body orclose the connection after sending its response, since otherwise the remainingdata on a persistent connection would be misinterpreted as the next request.Likewise, a client must read the entire response message body if it intends toreuse the same connection for a subsequent request.A proxy server must not maintain a persistent connection with an HTTP/1.0client (see Section 19.7.1 of [RFC2068] for information and discussion of theproblems with the Keep-Alive header field implemented by many HTTP/1.0clients).

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 52]

https://tools.ietf.org/html/rfc2068#section-19.7.1

See Appendix A.1.2 for more information on backwards compatibility withHTTP/1.0 clients.
6.3.1 Retrying RequestsConnections can be closed at any time, with or without intention.Implementations ought to anticipate the need to recover from asynchronousclose events.When an inbound connection is closed prematurely, a client may open a newconnection and automatically retransmit an aborted sequence of requests if allof those requests have idempotent methods (Section 4.2.2 of [RFC7231]). Aproxy must not automatically retry non-idempotent requests.A user agent must not automatically retry a request with a non-idempotentmethod unless it has some means to know that the request semantics areactually idempotent, regardless of the method, or some means to detect that theoriginal request was never applied. For example, a user agent that knows(through design or configuration) that a POST request to a given resource issafe can repeat that request automatically. Likewise, a user agent designedspecifically to operate on a version control repository might be able to recoverfrom partial failure conditions by checking the target resource revision(s) aftera failed connection, reverting or fixing any changes that were partially applied,and then automatically retrying the requests that failed.A client should not automatically retry a failed automatic retry.
6.3.2 PipeliningA client that supports persistent connections may "pipeline" its requests (i.e.,send multiple requests without waiting for each response). A server mayprocess a sequence of pipelined requests in parallel if they all have safemethods (Section 4.2.1 of [RFC7231]), but it must send the correspondingresponses in the same order that the requests were received.A client that pipelines requests should retry unanswered requests if theconnection closes before it receives all of the corresponding responses. Whenretrying pipelined requests after a failed connection (a connection not explicitlyclosed by the server in its last complete response), a client must not pipelineimmediately after connection establishment, since the first remaining requestin the prior pipeline might have caused an error response that can be lost againif multiple requests are sent on a prematurely closed connection (see the TCPreset problem described in Section 6.6).

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 53]

rfc7231.html#idempotent.methods
rfc7231.html#safe.methods

Idempotent methods (Section 4.2.2 of [RFC7231]) are significant to pipeliningbecause they can be automatically retried after a connection failure. A useragent should not pipeline requests after a non-idempotent method, until thefinal response status code for that method has been received, unless the useragent has a means to detect and recover from partial failure conditionsinvolving the pipelined sequence.An intermediary that receives pipelined requests may pipeline those requestswhen forwarding them inbound, since it can rely on the outbound user agent(s)to determine what requests can be safely pipelined. If the inbound connectionfails before receiving a response, the pipelining intermediary may attempt toretry a sequence of requests that have yet to receive a response if the requestsall have idempotent methods; otherwise, the pipelining intermediary shouldforward any received responses and then close the corresponding outboundconnection(s) so that the outbound user agent(s) can recover accordingly.
6.4 ConcurrencyA client ought to limit the number of simultaneous open connections that itmaintains to a given server.Previous revisions of HTTP gave a specific number of connections as a ceiling,but this was found to be impractical for many applications. As a result, thisspecification does not mandate a particular maximum number of connectionsbut, instead, encourages clients to be conservative when opening multipleconnections.Multiple connections are typically used to avoid the "head-of-line blocking"problem, wherein a request that takes significant server-side processing and/orhas a large payload blocks subsequent requests on the same connection.However, each connection consumes server resources. Furthermore, usingmultiple connections can cause undesirable side effects in congestednetworks.Note that a server might reject traffic that it deems abusive or characteristic of adenial-of-service attack, such as an excessive number of open connections froma single client.
6.5 Failures and TimeoutsServers will usually have some timeout value beyond which they will no longermaintain an inactive connection. Proxy servers might make this a higher valuesince it is likely that the client will be making more connections through thesame proxy server. The use of persistent connections places no requirements onthe length (or existence) of this timeout for either the client or the server.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 54]

rfc7231.html#idempotent.methods

A client or server that wishes to time out should issue a graceful close on theconnection. Implementations should constantly monitor open connections fora received closure signal and respond to it as appropriate, since prompt closureof both sides of a connection enables allocated system resources to bereclaimed.A client, server, or proxy may close the transport connection at any time. Forexample, a client might have started to send a new request at the same timethat the server has decided to close the "idle" connection. From the server'spoint of view, the connection is being closed while it was idle, but from theclient's point of view, a request is in progress.A server should sustain persistent connections, when possible, and allow theunderlying transport's flow-control mechanisms to resolve temporaryoverloads, rather than terminate connections with the expectation that clientswill retry. The latter technique can exacerbate network congestion.A client sending a message body should monitor the network connection for anerror response while it is transmitting the request. If the client sees a responsethat indicates the server does not wish to receive the message body and isclosing the connection, the client should immediately cease transmitting thebody and close its side of the connection.
6.6 Tear-downThe Connection header field (Section 6.1) provides a "close" connection optionthat a sender should send when it wishes to close the connection after thecurrent request/response pair.A client that sends a "close" connection option must not send further requestson that connection (after the one containing "close") and must close theconnection after reading the final response message corresponding to thisrequest.A server that receives a "close" connection option must initiate a close of theconnection (see below) after it sends the final response to the request thatcontained "close". The server should send a "close" connection option in itsfinal response on that connection. The server must not process any furtherrequests received on that connection.A server that sends a "close" connection option must initiate a close of theconnection (see below) after it sends the response containing "close". Theserver must not process any further requests received on that connection.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 55]

A client that receives a "close" connection option must cease sending requestson that connection and close the connection after reading the response messagecontaining the "close"; if additional pipelined requests had been sent on theconnection, the client should not assume that they will be processed by theserver.If a server performs an immediate close of a TCP connection, there is asignificant risk that the client will not be able to read the last HTTP response. Ifthe server receives additional data from the client on a fully closed connection,such as another request that was sent by the client before receiving the server'sresponse, the server's TCP stack will send a reset packet to the client;unfortunately, the reset packet might erase the client's unacknowledged inputbuffers before they can be read and interpreted by the client's HTTP parser.To avoid the TCP reset problem, servers typically close a connection in stages.First, the server performs a half-close by closing only the write side of the read/write connection. The server then continues to read from the connection until itreceives a corresponding close by the client, or until the server is reasonablycertain that its own TCP stack has received the client's acknowledgement of thepacket(s) containing the server's last response. Finally, the server fully closesthe connection.It is unknown whether the reset problem is exclusive to TCP or might also befound in other transport connection protocols.
6.7 UpgradeThe "Upgrade" header field is intended to provide a simple mechanism fortransitioning from HTTP/1.1 to some other protocol on the same connection. Aclient may send a list of protocols in the Upgrade header field of a request toinvite the server to switch to one or more of those protocols, in order ofdescending preference, before sending the final response. A server may ignore areceived Upgrade header field if it wishes to continue using the current protocolon that connection. Upgrade cannot be used to insist on a protocol change.

Upgrade = 1#protocol

protocol = protocol-name ["/" protocol-version]
protocol-name = token
protocol-version = tokenA server that sends a 101 (Switching Protocols) response must send anUpgrade header field to indicate the new protocol(s) to which the connection isbeing switched; if multiple protocol layers are being switched, the sender mustlist the protocols in layer-ascending order. A server must not switch to aprotocol that was not indicated by the client in the corresponding request's

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 56]

rfc7231.html#status.101

Upgrade header field. A server may choose to ignore the order of preferenceindicated by the client and select the new protocol(s) based on other factors,such as the nature of the request or the current load on the server.A server that sends a 426 (Upgrade Required) response must send an Upgradeheader field to indicate the acceptable protocols, in order of descendingpreference.A server may send an Upgrade header field in any other response to advertisethat it implements support for upgrading to the listed protocols, in order ofdescending preference, when appropriate for a future request.The following is a hypothetical example sent by a client:
GET /hello.txt HTTP/1.1
Host: www.example.com
Connection: upgrade
Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

The capabilities and nature of the application-level communication after theprotocol change is entirely dependent upon the new protocol(s) chosen.However, immediately after sending the 101 (Switching Protocols) response,the server is expected to continue responding to the original request as if it hadreceived its equivalent within the new protocol (i.e., the server still has anoutstanding request to satisfy after the protocol has been changed, and isexpected to do so without requiring the request to be repeated).For example, if the Upgrade header field is received in a GET request and theserver decides to switch protocols, it first responds with a 101 (SwitchingProtocols) message in HTTP/1.1 and then immediately follows that with thenew protocol's equivalent of a response to a GET on the target resource. Thisallows a connection to be upgraded to protocols with the same semantics asHTTP without the latency cost of an additional round trip. A server must notswitch protocols unless the received message semantics can be honored by thenew protocol; an OPTIONS request can be honored by any protocol.The following is an example response to the above hypothetical request:
HTTP/1.1 101 Switching Protocols
Connection: upgrade
Upgrade: HTTP/2.0

[... data stream switches to HTTP/2.0 with an appropriate response
(as defined by new protocol) to the "GET /hello.txt" request ...]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 57]

rfc7231.html#status.426
rfc7231.html#status.101
rfc7231.html#status.101
rfc7231.html#status.101

When Upgrade is sent, the sender must also send a Connection header field(Section 6.1) that contains an "upgrade" connection option, in order to preventUpgrade from being accidentally forwarded by intermediaries that might notimplement the listed protocols. A server must ignore an Upgrade header fieldthat is received in an HTTP/1.0 request.A client cannot begin using an upgraded protocol on the connection until it hascompletely sent the request message (i.e., the client can't change the protocol itis sending in the middle of a message). If a server receives both an Upgrade andan Expect header field with the "100-continue" expectation (Section 5.1.1 of[RFC7231]), the server must send a 100 (Continue) response before sending a101 (Switching Protocols) response.The Upgrade header field only applies to switching protocols on top of theexisting connection; it cannot be used to switch the underlying connection(transport) protocol, nor to switch the existing communication to a differentconnection. For those purposes, it is more appropriate to use a 3xx(Redirection) response (Section 6.4 of [RFC7231]).This specification only defines the protocol name "HTTP" for use by the familyof Hypertext Transfer Protocols, as defined by the HTTP version rules ofSection 2.6 and future updates to this specification. Additional tokens ought tobe registered with IANA using the registration procedure defined inSection 8.6.
7. ABNF List Extension: #rule

A #rule extension to the ABNF rules of [RFC5234] is used to improvereadability in the definitions of some header field values.A construct "#" is defined, similar to "*", for defining comma-delimited lists ofelements. The full form is "<n>#<m>element" indicating at least <n> and atmost <m> elements, each separated by a single comma (",") and optionalwhitespace (OWS).In any production that uses the list construct, a sender must not generateempty list elements. In other words, a sender must generate lists that satisfythe following syntax:
1#element => element *(OWS "," OWS element)and:
#element => [1#element]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 58]

rfc7231.html#header.expect
rfc7231.html#header.expect
rfc7231.html#status.100
rfc7231.html#status.101
rfc7231.html#status.3xx
rfc7231.html#status.3xx
rfc7231.html#status.3xx

and for n >= 1 and m > 1:
<n>#<m>element => element <n-1>*<m-1>(OWS "," OWS element)For compatibility with legacy list rules, a recipient must parse and ignore areasonable number of empty list elements: enough to handle common mistakesby senders that merge values, but not so much that they could be used as adenial-of-service mechanism. In other words, a recipient must accept lists thatsatisfy the following syntax:
#element => [("," / element) *(OWS "," [OWS element])]

1#element => *("," OWS) element *(OWS "," [OWS element])Empty elements do not contribute to the count of elements present. Forexample, given these ABNF productions:
example-list = 1#example-list-elmt
example-list-elmt = token ; see Section 3.2.6Then the following are valid values for example-list (not including the doublequotes, which are present for delimitation only):
"foo,bar"
"foo ,bar,"
"foo , ,bar,charlie "In contrast, the following values would be invalid, since at least one non-emptyelement is required by the example-list production:
""
","
", ,"Appendix B shows the collected ABNF for recipients after the list constructshave been expanded.

8. IANA Considerations

8.1 Header Field RegistrationHTTP header fields are registered within the "Message Headers" registrymaintained at <http://www.iana.org/assignments/message-headers/>.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 59]

http://www.iana.org/assignments/message-headers/

This document defines the following HTTP header fields, so the "PermanentMessage Header Field Names" registry has been updated accordingly (see[BCP90]).
Header Field Name Protocol Status ReferenceConnection http standard Section 6.1Content-Length http standard Section 3.3.2Host http standard Section 5.4TE http standard Section 4.3Trailer http standard Section 4.4Transfer-Encoding http standard Section 3.3.1Upgrade http standard Section 6.7Via http standard Section 5.7.1Furthermore, the header field-name "Close" has been registered as "reserved",since using that name as an HTTP header field might conflict with the "close"connection option of the Connection header field (Section 6.1).
Header Field Name Protocol Status ReferenceClose http reserved Section 8.1The change controller is: "IETF (iesg@ietf.org) - Internet Engineering TaskForce".

8.2 URI Scheme RegistrationIANA maintains the registry of URI Schemes [BCP115] at<http://www.iana.org/assignments/uri-schemes/>.This document defines the following URI schemes, so the "Permanent URISchemes" registry has been updated accordingly.
URI Scheme Description Referencehttp Hypertext Transfer Protocol Section 2.7.1https Hypertext Transfer Protocol Secure Section 2.7.2

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 60]

http://www.iana.org/assignments/uri-schemes/

8.3 Internet Media Type RegistrationIANA maintains the registry of Internet media types [BCP13] at<http://www.iana.org/assignments/media-types>.This document serves as the specification for the Internet media types"message/http" and "application/http". The following has been registered withIANA.
8.3.1 Internet Media Type message/httpThe message/http type can be used to enclose a single HTTP request orresponse message, provided that it obeys the MIME restrictions for all"message" types regarding line length and encodings.

Type name:message
Subtype name:http
Required parameters:N/A
Optional parameters:version, msgtype

version:The HTTP-version number of the enclosed message (e.g., "1.1"). Ifnot present, the version can be determined from the first line ofthe body.
msgtype:The message type — "request" or "response". If not present, thetype can be determined from the first line of the body.

Encoding considerations:only "7bit", "8bit", or "binary" are permitted
Security considerations:see Section 9
Interoperability considerations:N/A

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 61]

http://www.iana.org/assignments/media-types

Published specification:This specification (see Section 8.3.1).
Applications that use this media type:N/A
Fragment identifier considerations:N/A
Additional information:

Magic number(s):N/A
Deprecated alias names for this type:N/A
File extension(s):N/A
Macintosh file type code(s):N/A

Person and email address to contact for further information:See Authors' Addresses section.
Intended usage:COMMON
Restrictions on usage:N/A
Author:See Authors' Addresses section.
Change controller:IESG

8.3.2 Internet Media Type application/httpThe application/http type can be used to enclose a pipeline of one or moreHTTP request or response messages (not intermixed).
Type name:application

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 62]

Subtype name:http
Required parameters:N/A
Optional parameters:version, msgtype

version:The HTTP-version number of the enclosed messages (e.g., "1.1").If not present, the version can be determined from the first line ofthe body.
msgtype:The message type — "request" or "response". If not present, thetype can be determined from the first line of the body.

Encoding considerations:HTTP messages enclosed by this type are in "binary" format; use of anappropriate Content-Transfer-Encoding is required when transmitted viaemail.
Security considerations:see Section 9
Interoperability considerations:N/A
Published specification:This specification (see Section 8.3.2).
Applications that use this media type:N/A
Fragment identifier considerations:N/A
Additional information:

Deprecated alias names for this type:N/A
Magic number(s):N/A
File extension(s):N/A

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 63]

Macintosh file type code(s):N/A
Person and email address to contact for further information:See Authors' Addresses section.
Intended usage:COMMON
Restrictions on usage:N/A
Author:See Authors' Addresses section.
Change controller:IESG

8.4 Transfer Coding RegistryThe "HTTP Transfer Coding Registry" defines the namespace for transfer codingnames. It is maintained at <http://www.iana.org/assignments/http-parameters>.
8.4.1 ProcedureRegistrations must include the following fields:• Name• Description• Pointer to specification textNames of transfer codings must not overlap with names of content codings(Section 3.1.2.1 of [RFC7231]) unless the encoding transformation is identical,as is the case for the compression codings defined in Section 4.2.Values to be added to this namespace require IETF Review (see Section 4.1 of[RFC5226]), and must conform to the purpose of transfer coding defined in thisspecification.Use of program names for the identification of encoding formats is not desirableand is discouraged for future encodings.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 64]

http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-parameters
rfc7231.html#content.codings
https://tools.ietf.org/html/rfc5226#section-4.1

8.4.2 RegistrationThe "HTTP Transfer Coding Registry" has been updated with the registrationsbelow:
Name Description Referencechunked Transfer in a series of chunks Section 4.1compress UNIX "compress" data format [Welch] Section 4.2.1deflate "deflate" compressed data ([RFC1951]) inside the"zlib" data format ([RFC1950]) Section 4.2.2gzip GZIP file format [RFC1952] Section 4.2.3x-compress Deprecated (alias for compress) Section 4.2.1x-gzip Deprecated (alias for gzip) Section 4.2.3

8.5 Content Coding RegistrationIANA maintains the "HTTP Content Coding Registry" at <http://www.iana.org/assignments/http-parameters>.The "HTTP Content Coding Registry" has been updated with the registrationsbelow:
Name Description Referencecompress UNIX "compress" data format [Welch] Section 4.2.1deflate "deflate" compressed data ([RFC1951]) inside the"zlib" data format ([RFC1950]) Section 4.2.2gzip GZIP file format [RFC1952] Section 4.2.3x-compress Deprecated (alias for compress) Section 4.2.1x-gzip Deprecated (alias for gzip) Section 4.2.3

8.6 Upgrade Token RegistryThe "Hypertext Transfer Protocol (HTTP) Upgrade Token Registry" defines thenamespace for protocol-name tokens used to identify protocols in the Upgradeheader field. The registry is maintained at <http://www.iana.org/assignments/http-upgrade-tokens>.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 65]

http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-upgrade-tokens
http://www.iana.org/assignments/http-upgrade-tokens

8.6.1 ProcedureEach registered protocol name is associated with contact information and anoptional set of specifications that details how the connection will be processedafter it has been upgraded.Registrations happen on a "First Come First Served" basis (see Section 4.1 of[RFC5226]) and are subject to the following rules:1. A protocol-name token, once registered, stays registered forever.2. The registration must name a responsible party for the registration.3. The registration must name a point of contact.4. The registration may name a set of specifications associated with thattoken. Such specifications need not be publicly available.5. The registration should name a set of expected "protocol-version" tokensassociated with that token at the time of registration.6. The responsible party may change the registration at any time. The IANAwill keep a record of all such changes, and make them available uponrequest.7. The IESG may reassign responsibility for a protocol token. This willnormally only be used in the case when a responsible party cannot becontacted.This registration procedure for HTTP Upgrade Tokens replaces that previouslydefined in Section 7.2 of [RFC2817].
8.6.2 Upgrade Token RegistrationThe "HTTP" entry in the upgrade token registry has been updated with theregistration below:

Value Description Expected Version Tokens ReferenceHTTP Hypertext Transfer Protocol any DIGIT.DIGIT (e.g, "2.0") Section 2.6The responsible party is: "IETF (iesg@ietf.org) - Internet Engineering TaskForce".
9. Security Considerations

This section is meant to inform developers, information providers, and users ofknown security considerations relevant to HTTP message syntax, parsing, androuting. Security considerations about HTTP semantics and payloads areaddressed in [RFC7231].

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 66]

https://tools.ietf.org/html/rfc5226#section-4.1
https://tools.ietf.org/html/rfc2817#section-7.2

9.1 Establishing AuthorityHTTP relies on the notion of an authoritative response: a response that has beendetermined by (or at the direction of) the authority identified within the targetURI to be the most appropriate response for that request given the state of thetarget resource at the time of response message origination. Providing aresponse from a non-authoritative source, such as a shared cache, is oftenuseful to improve performance and availability, but only to the extent that thesource can be trusted or the distrusted response can be safely used.Unfortunately, establishing authority can be difficult. For example, phishing isan attack on the user's perception of authority, where that perception can bemisled by presenting similar branding in hypertext, possibly aided by userinfoobfuscating the authority component (see Section 2.7.1). User agents canreduce the impact of phishing attacks by enabling users to easily inspect atarget URI prior to making an action, by prominently distinguishing (orrejecting) userinfo when present, and by not sending stored credentials andcookies when the referring document is from an unknown or untrustedsource.When a registered name is used in the authority component, the "http" URIscheme (Section 2.7.1) relies on the user's local name resolution service todetermine where it can find authoritative responses. This means that any attackon a user's network host table, cached names, or name resolution librariesbecomes an avenue for attack on establishing authority. Likewise, the user'schoice of server for Domain Name Service (DNS), and the hierarchy of serversfrom which it obtains resolution results, could impact the authenticity ofaddress mappings; DNS Security Extensions (DNSSEC, [RFC4033]) are one wayto improve authenticity.Furthermore, after an IP address is obtained, establishing authority for an"http" URI is vulnerable to attacks on Internet Protocol routing.The "https" scheme (Section 2.7.2) is intended to prevent (or at least reveal)many of these potential attacks on establishing authority, provided that thenegotiated TLS connection is secured and the client properly verifies that thecommunicating server's identity matches the target URI's authority component(see [RFC2818]). Correctly implementing such verification can be difficult (see[Georgiev]).
9.2 Risks of IntermediariesBy their very nature, HTTP intermediaries are men-in-the-middle and, thus,represent an opportunity for man-in-the-middle attacks. Compromise of thesystems on which the intermediaries run can result in serious security and

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 67]

privacy problems. Intermediaries might have access to security-relatedinformation, personal information about individual users and organizations,and proprietary information belonging to users and content providers. Acompromised intermediary, or an intermediary implemented or configuredwithout regard to security and privacy considerations, might be used in thecommission of a wide range of potential attacks.Intermediaries that contain a shared cache are especially vulnerable to cachepoisoning attacks, as described in Section 8 of [RFC7234].Implementers need to consider the privacy and security implications of theirdesign and coding decisions, and of the configuration options they provide tooperators (especially the default configuration).Users need to be aware that intermediaries are no more trustworthy than thepeople who run them; HTTP itself cannot solve this problem.
9.3 Attacks via Protocol Element LengthBecause HTTP uses mostly textual, character-delimited fields, parsers are oftenvulnerable to attacks based on sending very long (or very slow) streams of data,particularly where an implementation is expecting a protocol element with nopredefined length.To promote interoperability, specific recommendations are made for minimumsize limits on request-line (Section 3.1.1) and header fields (Section 3.2). Theseare minimum recommendations, chosen to be supportable even byimplementations with limited resources; it is expected that mostimplementations will choose substantially higher limits.A server can reject a message that has a request-target that is too long (Section6.5.12 of [RFC7231]) or a request payload that is too large (Section 6.5.11 of[RFC7231]). Additional status codes related to capacity limits have beendefined by extensions to HTTP [RFC6585].Recipients ought to carefully limit the extent to which they process otherprotocol elements, including (but not limited to) request methods, responsestatus phrases, header field-names, numeric values, and body chunks. Failure tolimit such processing can result in buffer overflows, arithmetic overflows, orincreased vulnerability to denial-of-service attacks.
9.4 Response SplittingResponse splitting (a.k.a, CRLF injection) is a common technique, used invarious attacks on Web usage, that exploits the line-based nature of HTTP

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 68]

rfc7234.html#security.considerations
rfc7231.html#status.414
rfc7231.html#status.414
rfc7231.html#status.413

message framing and the ordered association of requests to responses onpersistent connections [Klein]. This technique can be particularly damagingwhen the requests pass through a shared cache.Response splitting exploits a vulnerability in servers (usually within anapplication server) where an attacker can send encoded data within someparameter of the request that is later decoded and echoed within any of theresponse header fields of the response. If the decoded data is crafted to looklike the response has ended and a subsequent response has begun, theresponse has been split and the content within the apparent second response iscontrolled by the attacker. The attacker can then make any other request on thesame persistent connection and trick the recipients (including intermediaries)into believing that the second half of the split is an authoritative answer to thesecond request.For example, a parameter within the request-target might be read by anapplication server and reused within a redirect, resulting in the sameparameter being echoed in the Location header field of the response. If theparameter is decoded by the application and not properly encoded when placedin the response field, the attacker can send encoded CRLF octets and othercontent that will make the application's single response look like two or moreresponses.A common defense against response splitting is to filter requests for data thatlooks like encoded CR and LF (e.g., "%0D" and "%0A"). However, that assumesthe application server is only performing URI decoding, rather than moreobscure data transformations like charset transcoding, XML entity translation,base64 decoding, sprintf reformatting, etc. A more effective mitigation is toprevent anything other than the server's core protocol libraries from sending aCR or LF within the header section, which means restricting the output ofheader fields to APIs that filter for bad octets and not allowing applicationservers to write directly to the protocol stream.
9.5 Request SmugglingRequest smuggling ([Linhart]) is a technique that exploits differences inprotocol parsing among various recipients to hide additional requests (whichmight otherwise be blocked or disabled by policy) within an apparentlyharmless request. Like response splitting, request smuggling can lead to avariety of attacks on HTTP usage.This specification has introduced new requirements on request parsing,particularly with regard to message framing in Section 3.3.3, to reduce theeffectiveness of request smuggling.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 69]

rfc7231.html#header.location

9.6 Message IntegrityHTTP does not define a specific mechanism for ensuring message integrity,instead relying on the error-detection ability of underlying transport protocolsand the use of length or chunk-delimited framing to detect completeness.Additional integrity mechanisms, such as hash functions or digital signaturesapplied to the content, can be selectively added to messages via extensiblemetadata header fields. Historically, the lack of a single integrity mechanism hasbeen justified by the informal nature of most HTTP communication. However,the prevalence of HTTP as an information access mechanism has resulted in itsincreasing use within environments where verification of message integrity iscrucial.User agents are encouraged to implement configurable means for detecting andreporting failures of message integrity such that those means can be enabledwithin environments for which integrity is necessary. For example, a browserbeing used to view medical history or drug interaction information needs toindicate to the user when such information is detected by the protocol to beincomplete, expired, or corrupted during transfer. Such mechanisms might beselectively enabled via user agent extensions or the presence of messageintegrity metadata in a response. At a minimum, user agents ought to providesome indication that allows a user to distinguish between a complete andincomplete response message (Section 3.4) when such verification is desired.
9.7 Message ConfidentialityHTTP relies on underlying transport protocols to provide messageconfidentiality when that is desired. HTTP has been specifically designed to beindependent of the transport protocol, such that it can be used over manydifferent forms of encrypted connection, with the selection of such transportsbeing identified by the choice of URI scheme or within user agentconfiguration.The "https" scheme can be used to identify resources that require a confidentialconnection, as described in Section 2.7.2.
9.8 Privacy of Server Log InformationA server is in the position to save personal data about a user's requests overtime, which might identify their reading patterns or subjects of interest. Inparticular, log information gathered at an intermediary often contains a historyof user agent interaction, across a multitude of sites, that can be traced toindividual users.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 70]

HTTP log information is confidential in nature; its handling is often constrainedby laws and regulations. Log information needs to be securely stored andappropriate guidelines followed for its analysis. Anonymization of personalinformation within individual entries helps, but it is generally not sufficient toprevent real log traces from being re-identified based on correlation with otheraccess characteristics. As such, access traces that are keyed to a specific clientare unsafe to publish even if the key is pseudonymous.To minimize the risk of theft or accidental publication, log information ought tobe purged of personally identifiable information, including user identifiers, IPaddresses, and user-provided query parameters, as soon as that information isno longer necessary to support operational needs for security, auditing, or fraudcontrol.
10. Acknowledgments

This edition of HTTP/1.1 builds on the many contributions that went into RFC1945, RFC 2068, RFC 2145, and RFC 2616, including substantial contributionsmade by the previous authors, editors, and Working Group Chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding, Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C.Mogul, Larry Masinter, and Paul J. Leach. Mark Nottingham oversaw this effortas Working Group Chair.Since 1999, the following contributors have helped improve the HTTPspecification by reporting bugs, asking smart questions, drafting or reviewingtext, and evaluating open issues:Adam Barth, Adam Roach, Addison Phillips, Adrian Chadd, Adrian Cole, AdrienW. de Croy, Alan Ford, Alan Ruttenberg, Albert Lunde, Alek Storm, AlexRousskov, Alexandre Morgaut, Alexey Melnikov, Alisha Smith, Amichai Rothman,Amit Klein, Amos Jeffries, Andreas Maier, Andreas Petersson, Andrei Popov, AnilSharma, Anne van Kesteren, Anthony Bryan, Asbjorn Ulsberg, Ashok Kumar,Balachander Krishnamurthy, Barry Leiba, Ben Laurie, Benjamin Carlyle,Benjamin Niven-Jenkins, Benoit Claise, Bil Corry, Bill Burke, Bjoern Hoehrmann,Bob Scheifler, Boris Zbarsky, Brett Slatkin, Brian Kell, Brian McBarron, BrianPane, Brian Raymor, Brian Smith, Bruce Perens, Bryce Nesbitt, CameronHeavon-Jones, Carl Kugler, Carsten Bormann, Charles Fry, Chris Burdess, ChrisNewman, Christian Huitema, Cyrus Daboo, Dale Robert Anderson, Dan Wing,Dan Winship, Daniel Stenberg, Darrel Miller, Dave Cridland, Dave Crocker, DaveKristol, Dave Thaler, David Booth, David Singer, David W. Morris, DiwakarShetty, Dmitry Kurochkin, Drummond Reed, Duane Wessels, Edward Lee, EitanAdler, Eliot Lear, Emile Stephan, Eran Hammer-Lahav, Eric D. Williams, Eric J.Bowman, Eric Lawrence, Eric Rescorla, Erik Aronesty, EungJun Yi, EvanProdromou, Felix Geisendoerfer, Florian Weimer, Frank Ellermann, Fred Akalin,

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 71]

Fred Bohle, Frederic Kayser, Gabor Molnar, Gabriel Montenegro, GeoffreySneddon, Gervase Markham, Gili Tzabari, Grahame Grieve, Greg Slepak, GregWilkins, Grzegorz Calkowski, Harald Tveit Alvestrand, Harry Halpin, Helge Hess,Henrik Nordstrom, Henry S. Thompson, Henry Story, Herbert van de Sompel,Herve Ruellan, Howard Melman, Hugo Haas, Ian Fette, Ian Hickson, Ido Safruti,Ilari Liusvaara, Ilya Grigorik, Ingo Struck, J. Ross Nicoll, James Cloos, James H.Manger, James Lacey, James M. Snell, Jamie Lokier, Jan Algermissen, Jari Arkko,Jeff Hodges (who came up with the term 'effective Request-URI'), Jeff Pinner, JeffWalden, Jim Luther, Jitu Padhye, Joe D. Williams, Joe Gregorio, Joe Orton, JoelJaeggli, John C. Klensin, John C. Mallery, John Cowan, John Kemp, John Panzer,John Schneider, John Stracke, John Sullivan, Jonas Sicking, Jonathan A. Rees,Jonathan Billington, Jonathan Moore, Jonathan Silvera, Jordi Ros, JorisDobbelsteen, Josh Cohen, Julien Pierre, Jungshik Shin, Justin Chapweske, JustinErenkrantz, Justin James, Kalvinder Singh, Karl Dubost, Kathleen Moriarty, KeithHoffman, Keith Moore, Ken Murchison, Koen Holtman, Konstantin Voronkov,Kris Zyp, Leif Hedstrom, Lionel Morand, Lisa Dusseault, Maciej Stachowiak,Manu Sporny, Marc Schneider, Marc Slemko, Mark Baker, Mark Pauley, MarkWatson, Markus Isomaki, Markus Lanthaler, Martin J. Duerst, Martin Musatov,Martin Nilsson, Martin Thomson, Matt Lynch, Matthew Cox, Matthew Kerwin,Max Clark, Menachem Dodge, Meral Shirazipour, Michael Burrows, MichaelHausenblas, Michael Scharf, Michael Sweet, Michael Tuexen, Michael Welzl,Mike Amundsen, Mike Belshe, Mike Bishop, Mike Kelly, Mike Schinkel, MilesSabin, Murray S. Kucherawy, Mykyta Yevstifeyev, Nathan Rixham, NicholasShanks, Nico Williams, Nicolas Alvarez, Nicolas Mailhot, Noah Slater, OsamaMazahir, Pablo Castro, Pat Hayes, Patrick R. McManus, Paul E. Jones, PaulHoffman, Paul Marquess, Pete Resnick, Peter Lepeska, Peter Occil, Peter Saint-Andre, Peter Watkins, Phil Archer, Phil Hunt, Philippe Mougin, Phillip Hallam-Baker, Piotr Dobrogost, Poul-Henning Kamp, Preethi Natarajan, Rajeev Bector,Ray Polk, Reto Bachmann-Gmuer, Richard Barnes, Richard Cyganiak, Rob Trace,Robby Simpson, Robert Brewer, Robert Collins, Robert Mattson, RobertO'Callahan, Robert Olofsson, Robert Sayre, Robert Siemer, Robert de Wilde,Roberto Javier Godoy, Roberto Peon, Roland Zink, Ronny Widjaja, RyanHamilton, S. Mike Dierken, Salvatore Loreto, Sam Johnston, Sam Pullara, SamRuby, Saurabh Kulkarni, Scott Lawrence (who maintained the original issueslist), Sean B. Palmer, Sean Turner, Sebastien Barnoud, Shane McCarron, ShigekiOhtsu, Simon Yarde, Stefan Eissing, Stefan Tilkov, Stefanos Harhalakis, StephaneBortzmeyer, Stephen Farrell, Stephen Kent, Stephen Ludin, Stuart Williams,Subbu Allamaraju, Subramanian Moonesamy, Susan Hares, SylvainHellegouarch, Tapan Divekar, Tatsuhiro Tsujikawa, Tatsuya Hayashi, Ted Hardie,Ted Lemon, Thomas Broyer, Thomas Fossati, Thomas Maslen, Thomas Nadeau,Thomas Nordin, Thomas Roessler, Tim Bray, Tim Morgan, Tim Olsen, Tom Zhou,Travis Snoozy, Tyler Close, Vincent Murphy, Wenbo Zhu, Werner Baumann,Wilbur Streett, Wilfredo Sanchez Vega, William A. Rowe Jr., William Chan, WillyTarreau, Xiaoshu Wang, Yaron Goland, Yngve Nysaeter Pettersen, Yoav Nir,

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 72]

Yogesh Bang, Yuchung Cheng, Yutaka Oiwa, Yves Lafon (long-time member ofthe editor team), Zed A. Shaw, and Zhong Yu.See Section 16 of [RFC2616] for additional acknowledgements from priorrevisions.
11. References

11.1 Normative References

[RFC0793] Postel, J., “Transmission Control Protocol”, STD 7, RFC 793,September 1981.
[RFC1950] Deutsch, L. and J-L. Gailly, “ZLIB Compressed Data FormatSpecification version 3.3”, RFC 1950, May 1996.
[RFC1951] Deutsch, P., “DEFLATE Compressed Data Format Specificationversion 1.3”, RFC 1951, May 1996.
[RFC1952] Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and G. Randers-Pehrson, “GZIP file format specification version 4.3”, RFC 1952,May 1996.
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate RequirementLevels”, BCP 14, RFC 2119, March 1997.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform ResourceIdentifier (URI): Generic Syntax”, STD 66, RFC 3986,January 2005.
[RFC5234] Crocker, D., Ed. and P. Overell, “Augmented BNF for SyntaxSpecifications: ABNF”, STD 68, RFC 5234, January 2008.
[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol(HTTP/1.1): Semantics and Content”, RFC 7231, June 2014.
[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol(HTTP/1.1): Conditional Requests”, RFC 7232, June 2014.
[RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed., “HypertextTransfer Protocol (HTTP/1.1): Range Requests”, RFC 7233,June 2014.
[RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed.,“Hypertext Transfer Protocol (HTTP/1.1): Caching”, RFC 7234,June 2014.
[RFC7235] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol(HTTP/1.1): Authentication”, RFC 7235, June 2014.
[USASCII] American National Standards Institute, “Coded Character Set --7-bit American Standard Code for Information Interchange”,ANSI X3.4, 1986.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 73]

https://tools.ietf.org/html/rfc2616#section-16
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7235

[Welch] Welch, T., “A Technique for High-Performance Data Compression”,IEEE Computer 17(6), June 1984.
11.2 Informative References

[BCP115] Hansen, T., Hardie, T., and L. Masinter, “Guidelines andRegistration Procedures for New URI Schemes”, BCP 115,RFC 4395, February 2006.
[BCP13] Freed, N., Klensin, J., and T. Hansen, “Media Type Specificationsand Registration Procedures”, BCP 13, RFC 6838,January 2013.
[BCP90] Klyne, G., Nottingham, M., and J. Mogul, “RegistrationProcedures for Message Header Fields”, BCP 90, RFC 3864,September 2004.
[Georgiev] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., and V.Shmatikov, “The Most Dangerous Code in the World: ValidatingSSL Certificates in Non-browser Software”, In Proceedings ofthe 2012 ACM Conference on Computer and CommunicationsSecurity (CCS '12), pp. 38-49, October 2012,<http://doi.acm.org/10.1145/2382196.2382204>.
[ISO-8859-1] International Organization for Standardization, “Informationtechnology -- 8-bit single-byte coded graphic character sets --Part 1: Latin alphabet No. 1”, ISO/IEC 8859-1:1998, 1998.
[Klein] Klein, A., “Divide and Conquer - HTTP Response Splitting, WebCache Poisoning Attacks, and Related Topics”, March 2004,<http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf>.
[Kri2001] Kristol, D., “HTTP Cookies: Standards, Privacy, and Politics”,ACM Transactions on Internet Technology 1(2),November 2001, <http://arxiv.org/abs/cs.SE/0105018>.
[Linhart] Linhart, C., Klein, A., Heled, R., and S. Orrin, “HTTP RequestSmuggling”, June 2005, <http://www.watchfire.com/news/whitepapers.aspx>.
[RFC1919] Chatel, M., “Classical versus Transparent IP Proxies”, RFC 1919,March 1996.
[RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen, “HypertextTransfer Protocol -- HTTP/1.0”, RFC 1945, May 1996.
[RFC2045] Freed, N. and N. Borenstein, “Multipurpose Internet MailExtensions (MIME) Part One: Format of Internet MessageBodies”, RFC 2045, November 1996.
[RFC2047] Moore, K., “MIME (Multipurpose Internet Mail Extensions)Part Three: Message Header Extensions for Non-ASCII Text”,RFC 2047, November 1996.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 74]

https://tools.ietf.org/html/rfc4395
https://tools.ietf.org/html/rfc4395
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc3864
https://tools.ietf.org/html/rfc3864
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://arxiv.org/abs/cs.SE/0105018
http://arxiv.org/abs/cs.SE/0105018
http://www.watchfire.com/news/whitepapers.aspx
http://www.watchfire.com/news/whitepapers.aspx
http://www.watchfire.com/news/whitepapers.aspx
http://www.watchfire.com/news/whitepapers.aspx
https://tools.ietf.org/html/rfc1919
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc2047

[RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. Berners-Lee,“Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2068,January 1997.
[RFC2145] Mogul, J., Fielding, R., Gettys, J., and H. Nielsen, “Use andInterpretation of HTTP Version Numbers”, RFC 2145,May 1997.
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616, June 1999.
[RFC2817] Khare, R. and S. Lawrence, “Upgrading to TLS Within HTTP/1.1”, RFC 2817, May 2000.
[RFC2818] Rescorla, E., “HTTP Over TLS”, RFC 2818, May 2000.
[RFC3040] Cooper, I., Melve, I., and G. Tomlinson, “Internet WebReplication and Caching Taxonomy”, RFC 3040, January 2001.
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, “DNSSecurity Introduction and Requirements”, RFC 4033,March 2005.
[RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, “SPNEGO-based Kerberosand NTLM HTTP Authentication in Microsoft Windows”,RFC 4559, June 2006.
[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANAConsiderations Section in RFCs”, BCP 26, RFC 5226, May 2008.
[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS)Protocol Version 1.2”, RFC 5246, August 2008.
[RFC5322] Resnick, P., “Internet Message Format”, RFC 5322,October 2008.
[RFC6265] Barth, A., “HTTP State Management Mechanism”, RFC 6265,April 2011.
[RFC6585] Nottingham, M. and R. Fielding, “Additional HTTP StatusCodes”, RFC 6585, April 2012.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 75]

https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2145
https://tools.ietf.org/html/rfc2145
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2817
https://tools.ietf.org/html/rfc2817
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc3040
https://tools.ietf.org/html/rfc3040
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4559
https://tools.ietf.org/html/rfc4559
https://tools.ietf.org/html/rfc5226
https://tools.ietf.org/html/rfc5226
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6585

A. HTTP Version History

HTTP has been in use since 1990. The first version, later referred to as HTTP/0.9, was a simple protocol for hypertext data transfer across the Internet, usingonly a single request method (GET) and no metadata. HTTP/1.0, as defined by[RFC1945], added a range of request methods and MIME-like messaging,allowing for metadata to be transferred and modifiers placed on the request/response semantics. However, HTTP/1.0 did not sufficiently take intoconsideration the effects of hierarchical proxies, caching, the need for persistentconnections, or name-based virtual hosts. The proliferation of incompletelyimplemented applications calling themselves "HTTP/1.0" further necessitated aprotocol version change in order for two communicating applications todetermine each other's true capabilities.HTTP/1.1 remains compatible with HTTP/1.0 by including more stringentrequirements that enable reliable implementations, adding only those featuresthat can either be safely ignored by an HTTP/1.0 recipient or only be sent whencommunicating with a party advertising conformance with HTTP/1.1.HTTP/1.1 has been designed to make supporting previous versions easy. Ageneral-purpose HTTP/1.1 server ought to be able to understand any validrequest in the format of HTTP/1.0, responding appropriately with an HTTP/1.1message that only uses features understood (or safely ignored) by HTTP/1.0clients. Likewise, an HTTP/1.1 client can be expected to understand any validHTTP/1.0 response.Since HTTP/0.9 did not support header fields in a request, there is nomechanism for it to support name-based virtual hosts (selection of resource byinspection of the Host header field). Any server that implements name-basedvirtual hosts ought to disable support for HTTP/0.9. Most requests that appearto be HTTP/0.9 are, in fact, badly constructed HTTP/1.x requests caused by aclient failing to properly encode the request-target.
A.1 Changes from HTTP/1.0This section summarizes major differences between versions HTTP/1.0 andHTTP/1.1.
A.1.1 Multihomed Web ServersThe requirements that clients and servers support the Host header field(Section 5.4), report an error if it is missing from an HTTP/1.1 request, and

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 76]

accept absolute URIs (Section 5.3) are among the most important changesdefined by HTTP/1.1.Older HTTP/1.0 clients assumed a one-to-one relationship of IP addresses andservers; there was no other established mechanism for distinguishing theintended server of a request than the IP address to which that request wasdirected. The Host header field was introduced during the development ofHTTP/1.1 and, though it was quickly implemented by most HTTP/1.0 browsers,additional requirements were placed on all HTTP/1.1 requests in order toensure complete adoption. At the time of this writing, most HTTP-basedservices are dependent upon the Host header field for targeting requests.
A.1.2 Keep-Alive ConnectionsIn HTTP/1.0, each connection is established by the client prior to the requestand closed by the server after sending the response. However, someimplementations implement the explicitly negotiated ("Keep-Alive") version ofpersistent connections described in Section 19.7.1 of [RFC2068].Some clients and servers might wish to be compatible with these previousapproaches to persistent connections, by explicitly negotiating for them with a"Connection: keep-alive" request header field. However, some experimentalimplementations of HTTP/1.0 persistent connections are faulty; for example, ifan HTTP/1.0 proxy server doesn't understand Connection, it will erroneouslyforward that header field to the next inbound server, which would result in ahung connection.One attempted solution was the introduction of a Proxy-Connection headerfield, targeted specifically at proxies. In practice, this was also unworkable,because proxies are often deployed in multiple layers, bringing about the sameproblem discussed above.As a result, clients are encouraged not to send the Proxy-Connection headerfield in any requests.Clients are also encouraged to consider the use of Connection: keep-alive inrequests carefully; while they can enable persistent connections with HTTP/1.0servers, clients using them will need to monitor the connection for "hung"requests (which indicate that the client ought stop sending the header field),and this mechanism ought not be used by clients at all when a proxy is beingused.

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 77]

https://tools.ietf.org/html/rfc2068#section-19.7.1

A.1.3 Introduction of Transfer-EncodingHTTP/1.1 introduces the Transfer-Encoding header field (Section 3.3.1).Transfer codings need to be decoded prior to forwarding an HTTP message overa MIME-compliant protocol.
A.2 Changes from RFC 2616HTTP's approach to error handling has been explained. (Section 2.5)The HTTP-version ABNF production has been clarified to be case-sensitive.Additionally, version numbers have been restricted to single digits, due to thefact that implementations are known to handle multi-digit version numbersincorrectly. (Section 2.6)Userinfo (i.e., username and password) are now disallowed in HTTP and HTTPSURIs, because of security issues related to their transmission on the wire.(Section 2.7.1)The HTTPS URI scheme is now defined by this specification; previously, it wasdone in Section 2.4 of [RFC2818]. Furthermore, it implies end-to-end security.(Section 2.7.2)HTTP messages can be (and often are) buffered by implementations; despite itsometimes being available as a stream, HTTP is fundamentally a message-oriented protocol. Minimum supported sizes for various protocol elements havebeen suggested, to improve interoperability. (Section 3)Invalid whitespace around field-names is now required to be rejected, becauseaccepting it represents a security vulnerability. The ABNF productions definingheader fields now only list the field value. (Section 3.2)Rules about implicit linear whitespace between certain grammar productionshave been removed; now whitespace is only allowed where specifically definedin the ABNF. (Section 3.2.3)Header fields that span multiple lines ("line folding") are deprecated.(Section 3.2.4)The NUL octet is no longer allowed in comment and quoted-string text, andhandling of backslash-escaping in them has been clarified. The quoted-pair ruleno longer allows escaping control characters other than HTAB. Non-US-ASCIIcontent in header fields and the reason phrase has been obsoleted and madeopaque (the TEXT rule was removed). (Section 3.2.6)

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 78]

https://tools.ietf.org/html/rfc2818#section-2.4

Bogus Content-Length header fields are now required to be handled as errorsby recipients. (Section 3.3.2)The algorithm for determining the message body length has been clarified toindicate all of the special cases (e.g., driven by methods or status codes) thataffect it, and that new protocol elements cannot define such special cases.CONNECT is a new, special case in determining message body length."multipart/byteranges" is no longer a way of determining message body lengthdetection. (Section 3.3.3)The "identity" transfer coding token has been removed. (Sections 3.3 and 4)Chunk length does not include the count of the octets in the chunk header andtrailer. Line folding in chunk extensions is disallowed. (Section 4.1)The meaning of the "deflate" content coding has been clarified. (Section 4.2.2)The segment + query components of RFC 3986 have been used to define therequest-target, instead of abs_path from RFC 1808. The asterisk-form of therequest-target is only allowed with the OPTIONS method. (Section 5.3)The term "Effective Request URI" has been introduced. (Section 5.5)Gateways do not need to generate Via header fields anymore. (Section 5.7.1)Exactly when "close" connection options have to be sent has been clarified. Also,"hop-by-hop" header fields are required to appear in the Connection headerfield; just because they're defined as hop-by-hop in this specification doesn'texempt them. (Section 6.1)The limit of two connections per server has been removed. An idempotentsequence of requests is no longer required to be retried. The requirement toretry requests under certain circumstances when the server prematurely closesthe connection has been removed. Also, some extraneous requirements aboutwhen servers are allowed to close connections prematurely have been removed.(Section 6.3)The semantics of the Upgrade header field is now defined in responses otherthan 101 (this was incorporated from [RFC2817]). Furthermore, the ordering inthe field value is now significant. (Section 6.7)Empty list elements in list productions (e.g., a list header field containing ", ,")have been deprecated. (Section 7)Registration of Transfer Codings now requires IETF Review (Section 8.4)

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 79]

This specification now defines the Upgrade Token Registry, previously definedin Section 7.2 of [RFC2817]. (Section 8.6)The expectation to support HTTP/0.9 requests has been removed.(Appendix A)Issues with the Keep-Alive and Proxy-Connection header fields in requests arepointed out, with use of the latter being discouraged altogether.(Appendix A.1.2)

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 80]

https://tools.ietf.org/html/rfc2817#section-7.2

B. Collected ABNF

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 81]

BWS = OWS

Connection = *("," OWS) connection-option *(OWS "," [OWS
connection-option])

Content-Length = 1*DIGIT

HTTP-message = start-line *(header-field CRLF) CRLF [message-body
]

HTTP-name = %x48.54.54.50 ; HTTP
HTTP-version = HTTP-name "/" DIGIT "." DIGIT
Host = uri-host [":" port]

OWS = *(SP / HTAB)

RWS = 1*(SP / HTAB)

TE = [("," / t-codings) *(OWS "," [OWS t-codings])]
Trailer = *("," OWS) field-name *(OWS "," [OWS field-name])
Transfer-Encoding = *("," OWS) transfer-coding *(OWS "," [OWS
transfer-coding])

URI-reference = <URI-reference, see [RFC3986], Section 4.1>
Upgrade = *("," OWS) protocol *(OWS "," [OWS protocol])

Via = *("," OWS) (received-protocol RWS received-by [RWS comment
]) *(OWS "," [OWS (received-protocol RWS received-by [RWS
comment])])

absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>
absolute-form = absolute-URI
absolute-path = 1*("/" segment)
asterisk-form = "*"
authority = <authority, see [RFC3986], Section 3.2>
authority-form = authority

chunk = chunk-size [chunk-ext] CRLF chunk-data CRLF
chunk-data = 1*OCTET
chunk-ext = *(";" chunk-ext-name ["=" chunk-ext-val])
chunk-ext-name = token
chunk-ext-val = token / quoted-string
chunk-size = 1*HEXDIG
chunked-body = *chunk last-chunk trailer-part CRLF
comment = "(" *(ctext / quoted-pair / comment) ")"
connection-option = token
ctext = HTAB / SP / %x21-27 ; '!'-'''
/ %x2A-5B ; '*'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text

field-content = field-vchar [1*(SP / HTAB) field-vchar]
field-name = token
field-value = *(field-content / obs-fold)
field-vchar = VCHAR / obs-text
fragment = <fragment, see [RFC3986], Section 3.5>

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 82]

header-field = field-name ":" OWS field-value OWS
http-URI = "http://" authority path-abempty ["?" query] ["#"
fragment]

https-URI = "https://" authority path-abempty ["?" query] ["#"
fragment]

last-chunk = 1*"0" [chunk-ext] CRLF

message-body = *OCTET
method = token

obs-fold = CRLF 1*(SP / HTAB)
obs-text = %x80-FF
origin-form = absolute-path ["?" query]

partial-URI = relative-part ["?" query]
path-abempty = <path-abempty, see [RFC3986], Section 3.3>
port = <port, see [RFC3986], Section 3.2.3>
protocol = protocol-name ["/" protocol-version]
protocol-name = token
protocol-version = token
pseudonym = token

qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text

query = <query, see [RFC3986], Section 3.4>
quoted-pair = "\" (HTAB / SP / VCHAR / obs-text)
quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE

rank = ("0" ["." *3DIGIT]) / ("1" ["." *3"0"])
reason-phrase = *(HTAB / SP / VCHAR / obs-text)
received-by = (uri-host [":" port]) / pseudonym
received-protocol = [protocol-name "/"] protocol-version
relative-part = <relative-part, see [RFC3986], Section 4.2>
request-line = method SP request-target SP HTTP-version CRLF
request-target = origin-form / absolute-form / authority-form /
asterisk-form

scheme = <scheme, see [RFC3986], Section 3.1>
segment = <segment, see [RFC3986], Section 3.3>
start-line = request-line / status-line
status-code = 3DIGIT
status-line = HTTP-version SP status-code SP reason-phrase CRLF

t-codings = "trailers" / (transfer-coding [t-ranking])
t-ranking = OWS ";" OWS "q=" rank
tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
"^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA

token = 1*tchar
trailer-part = *(header-field CRLF)
transfer-coding = "chunked" / "compress" / "deflate" / "gzip" /
transfer-extension

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 83]

transfer-extension = token *(OWS ";" OWS transfer-parameter)
transfer-parameter = token BWS "=" BWS (token / quoted-string)

uri-host = <host, see [RFC3986], Section 3.2.2>

Index

A absolute-form (of request-target) 42accelerator 11application/http Media Type 62asterisk-form (of request-target) 43authoritative response 67authority-form (of request-target) 42
B

BCP115 60, 74
BCP13 61, 74
BCP90 60, 74browser 8

C cache 12cacheable 13captive portal 12chunked (Coding Format) 28, 32,36client 8close 24, 39, 47, 50, 51, 53, 55,55, 58, 60, 60, 79compress (Coding Format) 38connection 8Connection header field 24, 39,47, 50, 51, 53, 55, 55, 58, 60, 60,79

Content-Length header field 30,60, 79
D deflate (Coding Format) 38Delimiters 27downstream 11
E effective request URI 44
G gateway 11

Georgiev 67, 74
Grammar

absolute-form 41, 42
absolute-path 17
absolute-URI 17ALPHA 7
asterisk-form 41, 43
authority 17
authority-form 41, 42
BWS 25
chunk 36
chunk-data 36
chunk-ext 36, 36
chunk-ext-name 36
chunk-ext-val 36
chunk-size 36
chunked-body 36, 36
comment 27

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 84]

Connection 51
connection-option 51
Content-Length 30CR 7CRLF 7
ctext 27CTL 7DIGIT 7DQUOTE 7
field-content 23
field-name 23, 40
field-value 23
field-vchar 23
fragment 17
header-field 23, 37HEXDIG 7
Host 43HTAB 7
HTTP-message 20
HTTP-name 15
http-URI 17
HTTP-version 15
https-URI 19
last-chunk 36LF 7
message-body 28
method 22
obs-fold 23
obs-text 27OCTET 7
origin-form 41, 41
OWS 25
partial-URI 17

port 17
protocol-name 47
protocol-version 47
pseudonym 47
qdtext 27
query 17
quoted-pair 28
quoted-string 27
rank 39
reason-phrase 23
received-by 47
received-protocol 47
request-line 22
request-target 41
RWS 25
scheme 17
segment 17SP 7
start-line 21
status-code 23
status-line 23
t-codings 39
t-ranking 39
tchar 27
TE 39
token 27
Trailer 40
trailer-part 36, 37
transfer-coding 35
Transfer-Encoding 29
transfer-extension 35
transfer-parameter 35
Upgrade 56

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 85]

uri-host 17
URI-reference 17VCHAR 7
Via 47gzip (Coding Format) 38

H header field 20header section 20headers 20Host header field 41, 43, 60, 76http URI scheme 17https URI scheme 19
I inbound 11interception proxy 12intermediary 10

ISO-8859-1 26, 74
K

Klein 69, 74
Kri2001 25, 74

L

Linhart 69, 74
M Media Typeapplication/http 62message/http 61message 8message/http Media Type 61method 22
N non-transforming proxy 48
O origin server 8

origin-form (of request-target) 41outbound 11
P phishing 67proxy 11
R recipient 8request 8request-target 22resource 17response 8reverse proxy 11

RFC0793 17, 73
RFC1919 12, 74
RFC1945 15, 71, 74, 76
RFC1950 38, 65, 65, 73
RFC1951 38, 65, 65, 73
RFC1952 38, 65, 65, 73
RFC2045 8, 29, 74

Section 6 29
RFC2047 26, 74
RFC2068 16, 52, 71, 75, 77

Section 19.7.1 52, 77
RFC2119 7, 73
RFC2145 6, 71, 75
RFC2616 6, 16, 71, 73, 75

Section 16 73
RFC2817 6, 66, 75, 79, 80

Section 7.2 66, 80
RFC2818 6, 19, 67, 75, 78

Section 2.4 78
RFC3040 12, 75

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 86]

RFC3986 8, 17, 17, 17, 17, 17, 17,17, 17, 17, 17, 17, 17, 18, 18, 19,20, 20, 20, 20, 40, 73
Section 2.1 20
Section 2.2 20
Section 3.1 17
Section 3.2 17
Section 3.2.1 19
Section 3.2.2 17, 18
Section 3.2.3 17
Section 3.3 17, 17
Section 3.4 17
Section 3.5 17, 18, 40
Section 4.1 17
Section 4.2 17
Section 4.3 17
Section 6 20

RFC4033 67, 75
RFC4559 12, 75
RFC5226 64, 66, 75

Section 4.1 64, 66
RFC5234 7, 7, 58, 73

Appendix B.1 7
RFC5246 11, 19, 75
RFC5322 8, 20, 47, 75

Section 3.6.7 47
RFC6265 19, 25, 37, 75
RFC6585 68, 75
RFC7231 6, 8, 9, 17, 18, 22, 22,23, 23, 24, 28, 28, 28, 29, 30, 30,31, 31, 37, 37, 39, 40, 42, 43, 46,49, 49, 53, 53, 54, 58, 58, 64, 66,68, 68, 73

Section 2 17
Section 3 30
Section 3.1.2.1 29, 64

Section 3.3 49
Section 4 22
Section 4.2.1 53
Section 4.2.2 53, 54
Section 4.3.1 9, 28
Section 4.3.2 28, 31
Section 4.3.6 28, 30, 31, 42
Section 4.3.7 43
Section 5 37
Section 5.1.1 58
Section 5.3.1 39
Section 6 18, 23
Section 6.2 46
Section 6.3.4 49
Section 6.4 58
Section 6.5.11 68
Section 6.5.12 22, 68
Section 7.1 37
Section 7.1.1.2 23
Section 8.3 24
Appendix A 8

RFC7232 6, 29, 31, 73
Section 4.1 29, 31

RFC7233 6, 73
RFC7234 6, 13, 34, 40, 49, 49, 51,68, 73

Section 2 13
Section 3 34
Section 5.2 49, 51
Section 5.5 49
Section 8 68

RFC7235 6, 37, 73
S sender 8server 8

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 87]

spider 8
T target resource 40target URI 40TE header field 35, 37, 39, 60Trailer header field 40, 60Transfer-Encoding headerfield 28, 28, 35, 60, 78transforming proxy 48transparent proxy 12tunnel 11
U Upgrade header field 47, 56, 60,79upstream 11URI schemehttp 17https 19

USASCII 7, 20, 26, 73user agent 8
V Via header field 47, 60, 79
W

Welch 38, 65, 65, 74

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 88]

Authors' Addresses

Roy T. Fielding (editor)Adobe Systems Incorporated345 Park AveSan Jose, CA 95110USAEmail: fielding@gbiv.comURI: http://roy.gbiv.com/
Julian F. Reschke (editor)greenbytes GmbHHafenweg 16Muenster, NW 48155GermanyEmail: julian.reschke@greenbytes.deURI: http://greenbytes.de/tech/webdav/

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Fielding & Reschke Standards Track [Page 89]

http://roy.gbiv.com/
http://greenbytes.de/tech/webdav/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1 Requirements Notation
	1.2 Syntax Notation

	2. Architecture
	2.1 Client/Server Messaging
	2.2 Implementation Diversity
	2.3 Intermediaries
	2.4 Caches
	2.5 Conformance and Error Handling
	2.6 Protocol Versioning
	2.7 Uniform Resource Identifiers
	2.7.1 http URI Scheme
	2.7.2 https URI Scheme
	2.7.3 http and https URI Normalization and Comparison

	3. Message Format
	3.1 Start Line
	3.1.1 Request Line
	3.1.2 Status Line

	3.2 Header Fields
	3.2.1 Field Extensibility
	3.2.2 Field Order
	3.2.3 Whitespace
	3.2.4 Field Parsing
	3.2.5 Field Limits
	3.2.6 Field Value Components

	3.3 Message Body
	3.3.1 Transfer-Encoding
	3.3.2 Content-Length
	3.3.3 Message Body Length

	3.4 Handling Incomplete Messages
	3.5 Message Parsing Robustness

	4. Transfer Codings
	4.1 Chunked Transfer Coding
	4.1.1 Chunk Extensions
	4.1.2 Chunked Trailer Part
	4.1.3 Decoding Chunked

	4.2 Compression Codings
	4.2.1 Compress Coding
	4.2.2 Deflate Coding
	4.2.3 Gzip Coding

	4.3 TE
	4.4 Trailer

	5. Message Routing
	5.1 Identifying a Target Resource
	5.2 Connecting Inbound
	5.3 Request Target
	5.3.1 origin-form
	5.3.2 absolute-form
	5.3.3 authority-form
	5.3.4 asterisk-form

	5.4 Host
	5.5 Effective Request URI
	5.6 Associating a Response to a Request
	5.7 Message Forwarding
	5.7.1 Via
	5.7.2 Transformations

	6. Connection Management
	6.1 Connection
	6.2 Establishment
	6.3 Persistence
	6.3.1 Retrying Requests
	6.3.2 Pipelining

	6.4 Concurrency
	6.5 Failures and Timeouts
	6.6 Tear-down
	6.7 Upgrade

	7. ABNF List Extension: #rule
	8. IANA Considerations
	8.1 Header Field Registration
	8.2 URI Scheme Registration
	8.3 Internet Media Type Registration
	8.3.1 Internet Media Type message/http
	8.3.2 Internet Media Type application/http

	8.4 Transfer Coding Registry
	8.4.1 Procedure
	8.4.2 Registration

	8.5 Content Coding Registration
	8.6 Upgrade Token Registry
	8.6.1 Procedure
	8.6.2 Upgrade Token Registration

	9. Security Considerations
	9.1 Establishing Authority
	9.2 Risks of Intermediaries
	9.3 Attacks via Protocol Element Length
	9.4 Response Splitting
	9.5 Request Smuggling
	9.6 Message Integrity
	9.7 Message Confidentiality
	9.8 Privacy of Server Log Information

	10. Acknowledgments
	11. References
	11.1 Normative References
	11.2 Informative References

	A. HTTP Version History
	A.1 Changes from HTTP/1.0
	A.1.1 Multihomed Web Servers
	A.1.2 Keep-Alive Connections
	A.1.3 Introduction of Transfer-Encoding

	A.2 Changes from RFC 2616

	B. Collected ABNF
	Index
	Authors' Addresses

